FREE BOOKS

Author's List




PREV.   NEXT  
|<   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123  
124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   >>  
t its origin and during its progress, falls down three precipices--the first fall is equivalent in energy to the descent of a ton weight down a precipice 22,320 feet high-over four miles; the second fall is equal to that of a ton down a precipice 2900 feet high, and the third is equal to a fall of a ton down a precipice 433 feet high. I have seen the wild stone avalanches of the Alps, which smoke and thunder down the declivities with a vehemence almost sufficient to stun the observer. I have also seen snowflakes descending so softly as not to hurt the fragile spangles of which they are composed. Yet to produce from aqueous vapor a quantity which a child could carry of that tender material demands an exertion of energy competent to gather up the shattered blocks of the largest stone avalanche I have ever seen and pitch them to twice the height from which they fell." When we contemplate the foregoing facts as related to so small an amount of water as nine pounds, and multiply this result by the amount of snow- and rainfall each year and the amount of ice that is congealed and again liquefied by the power of the sun's rays, we are appalled, and shrink from the task of attempting to reduce the amount of energy expended in a single year to measurable units. Having considered water in its relation to heat in the preceding chapters, we will now take up the subject of water in its relation to ice and snowfall and the phenomena exhibited in ice rivers, commonly called glaciers. When water is under pressure the freezing point is reduced several degrees below 32 degrees Fahrenheit. This fact has been determined by confining water in a close vessel and putting it under pressure and subjecting it to a freezing mixture, and by this means determining the freezing point under such conditions. By putting a bullet or something of that nature into the water that is subjected to pressure one can tell by shaking it when the freezing point is reached. If water is put under pressure and cooled to a point below 32 degrees, and yet still remains in the liquid state, it may be suddenly congealed by taking off the pressure; this shows that the pressure helps to hold the molecules in the position necessary for the liquid state, and prevents the rearrangement of them that takes place at the moment of freezing. When the water molecules are arranged for the liquid condition they may be compared to a spring that is wound up and held in position b
PREV.   NEXT  
|<   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123  
124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   >>  



Top keywords:

pressure

 

freezing

 

amount

 

energy

 

precipice

 

liquid

 

degrees

 

relation

 
position
 

molecules


putting

 

congealed

 
vessel
 
weight
 

confining

 

determined

 

subjecting

 

mixture

 

conditions

 

bullet


determining
 

rivers

 

commonly

 
called
 

exhibited

 

phenomena

 

subject

 

snowfall

 

glaciers

 

Fahrenheit


reduced

 

nature

 

prevents

 
rearrangement
 

equivalent

 
spring
 

compared

 
moment
 
arranged
 

condition


reached
 

shaking

 
subjected
 

cooled

 

suddenly

 

taking

 

descent

 

progress

 
remains
 

chapters