FREE BOOKS

Author's List




PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   >>  
become wet before the excavation is completed. In caisson work, if the caisson can be kept absolutely plumb, it can be sunk without having to overcome much friction, while, on the other hand, if it is not kept plumb, the material is more or less disturbed and begins to bind, causing considerable friction. The author claims that the pressure does not increase with the depth, but all caisson men will probably remember that the friction to be overcome per square foot of surface increases with the depth. In calculating retaining walls, many engineers add the weight of the soil to the water, and calculate for from 90 to 100 lb. per cu. ft. The speaker is satisfied that in the so-called New York quicksand it is sufficient to use the weight of the water only. If the sand increased the side pressure above the water pressure, engineers would expect to use more compressed air to hold it back, while, as a matter of fact, the air pressure used seldom varies much from that called for by the hydrostatic head. Although allowance for water pressure is sufficient for designing retaining walls in New York quicksand, it is far from sufficient in certain silty materials. For instance, in Maryland, a coffer-dam, excavated to a depth of 30 ft. in silt and water, had the bottom shoved in 2 ft., in spite of the fact that the waling pieces were 5 ft. apart vertically at the top and 3 ft. at the bottom, and were braced with 12 by 12-in. timbers, every 7 ft. horizontally. The walings split, and the cross-braces cut into the waling pieces from 1 to 2 in.; in other words, the pressure seemed to be almost irresistible. This is quite a contrast to certain excavations in Brooklyn, which, without any bracing whatever, were safely carried down 15 ft. Any engineer who tries to guess at the angle of repose, and, from the resulting calculations, economizes on his bottom struts, will find that sooner or later an accident on one job will cause enough loss of life and money to pay for conservative timbers for the rest of his life. So much for side pressures. As to the pressure in the roof of a tunnel, probably every engineer will agree that almost any material except unfrozen water will tend to arch more or less, but how much it is impossible to say. It is doubtful whether any experienced engineer would ever try to carry all the weight over the roof, except in the case of back-fill, and even then he would have to make his own assumption (which sounds
PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   >>  



Top keywords:

pressure

 

sufficient

 

friction

 

weight

 

caisson

 
engineer
 

bottom

 

engineers

 

waling

 

retaining


quicksand
 

pieces

 

called

 

overcome

 

timbers

 

material

 

economizes

 
calculations
 

repose

 

braces


resulting

 

excavations

 

irresistible

 

contrast

 

Brooklyn

 

bracing

 
carried
 
safely
 

assumption

 
impossible

tunnel

 

unfrozen

 

doubtful

 
experienced
 

pressures

 

accident

 

sounds

 

sooner

 
conservative
 

struts


designing

 

calculating

 

increases

 

surface

 

remember

 

square

 
calculate
 
satisfied
 

speaker

 

increase