FREE BOOKS

Author's List




PREV.   NEXT  
|<   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75  
76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   >>   >|  
he author would in conclusion draw attention to what may possibly be one course of locomotive development in the future. Time is money, and it may be in the coming years that a demand will arise for faster means of transit than that which we possess at present. How can we meet it? With our railways laid out with the curves and gradients existing, and with our national gauge, and our present type of locomotive, no great advance in speed is very probable; the mean speed of express trains is about fifty miles an hour, and to take an average train of 200 tons weight at this speed over a level line requires between 650 and 700 effective horse-power, within the compass of the best engines of the present day. But if instead of fifty miles an hour seventy is required, an entirely different state of things obtains. Taking a train of 100 tons, with engine and tender weighing 75 tons, or 175 tons gross, the first question to determine will be the train resistance, and with reference to this we much want careful experiments on the subject, like those which Sir Daniel Gooch made in 1848, on the Bristol and Exeter Railway, which are even now the standard authority; the general use of oil axle-boxes and long bogie coaches, irrespective of other improvements, would render this course desirable. With regard to the former, they appear to run with less friction, but are heavier to start, oil boxes in some experiments made on the South-Western Railway giving a resistance of 2.5 lb. per ton, while grease boxes ranged from 6 lb. to 9 lb. per ton. Again, the long and heavy bogie Pullman and other coaches have the reputation among drivers, rightly or wrongly, of being hard to pull. The resistance of an express train on the Great Western Railway at seventy-five miles an hour was 42 lb. per ton, and taking 40 lb. per ton for seventy miles an hour would give a total resistance on the level of 7,000 lb., corresponding to 1,400 horse-power--about double the average duty of an express engine of the present day. The weight on the driving wheels required would be 183/4 tons, allowing one-sixth for adhesion, about the same as that on the driving axle of the Bristol and Exeter old bogie engines. Allowing 21/2 lb. of coal per horse-power per hour would give a total combustion of 3,500 lb. per hour and to burn this even at the maximum economic rate of 85 lb. per square foot of grate per hour would require a grate area of 41 square feet, and about 2,800 squar
PREV.   NEXT  
|<   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75  
76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   >>   >|  



Top keywords:

present

 

resistance

 

seventy

 

express

 

Railway

 
weight
 

engine

 

Exeter

 

Bristol

 

experiments


required
 

Western

 

coaches

 

engines

 

average

 

driving

 

locomotive

 
square
 

heavier

 

grease


maximum

 

giving

 

economic

 

require

 

improvements

 

render

 
desirable
 
ranged
 

regard

 
friction

adhesion

 

allowing

 

taking

 
double
 

wheels

 

Pullman

 

combustion

 

reputation

 
wrongly
 

rightly


drivers

 

Allowing

 

reference

 

gradients

 

existing

 

national

 
curves
 
railways
 

trains

 

probable