FREE BOOKS

Author's List




PREV.   NEXT  
|<   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323  
324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   >>   >|  
center brings loss of auditory knowledge. Injury to the retina or optic nerve, occurring early in life, results in an under-development of the cortex in the occipital lobe. The nerve cells remain small and their dendrites few and meager, because they have not received their normal amount of exercise through stimulation from the eye. Exercise, then, has the same general effect on neurones that it has on muscles; it causes them to grow and it probably also improves their internal condition so that they act more readily and more strongly. The growth, in the cortex, of dendrites and of the end-brushes of axons that interlace with the dendrites, must improve the synapses between one neurone and another, and thus make better conduction paths between one part of the cortex and another, and also between the cortex and the lower sensory and motor centers. The law of exercise has thus a very definite meaning when {415} translated into neural terms. It means that the synapses between stimulus and response are so improved, when traversed by nerve currents in the making of a reaction, that nerve currents can get across them more easily the next time. [Illustration: Fig. 63.--The law of exercise in terms of synapse. A nerve current is supposed to pass along this pair of neurones in the direction of the arrow. Every time it passes, it exercises the end-brush and dendrites at the synapse (for the "passage of a nerve current" really means activity on the part of the neurones through which it passes), and the after-effect of this exercise is growth of the exercised parts, and consequent improvement of the synapse as a linkage between one neurone and the other. Repeated exercise may probably bring a synapse from a very loose condition to a state of close interweaving and excellent power of transmitting the nerve current.] The more a synapse is used, the better synapse it becomes, and the better linkage it provides between some stimulus and some response. The cortex is the place where linkages are made in the process of learning, and it is there also that forgetting, or atrophy, takes place through disuse. Exercise makes a synapse closer, disuse lets it relapse into a loose and poorly conducting state. The law of combination, also, is readily translated into {416} neural terms. The "pre-existing loose linkages" which it assumed to exist undoubtedly do exist in the form of "association fibers" extending in vast numbers fro
PREV.   NEXT  
|<   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323  
324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   >>   >|  



Top keywords:

synapse

 

cortex

 
exercise
 

dendrites

 

current

 
neurones
 
neurone
 
disuse
 

condition

 

growth


synapses
 

readily

 

response

 
passes
 
currents
 
stimulus
 
linkage
 

translated

 

neural

 
linkages

effect

 

Exercise

 

retina

 

Injury

 

Repeated

 
interweaving
 

transmitting

 

excellent

 

passage

 

occurring


activity

 

knowledge

 
improvement
 

consequent

 

exercised

 

exercises

 

assumed

 
center
 

undoubtedly

 

existing


combination

 

numbers

 

extending

 

association

 

fibers

 
conducting
 
poorly
 

learning

 

process

 

direction