FREE BOOKS

Author's List




PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   >>  
chusetts, who have recently issued a very suggestive circular, accompanied by numerous examples of track construction for railway bridges. If this circular receives proper attention, it is sure to produce good results. Another point which has often been neglected, is making sufficient provision to resist the force of the wind. A tornado, such as is not uncommon in this country, will exert a force of 40 pounds per square foot, which upon the side of a wooden bridge, say of 200 feet span, and 25 feet high, and boarded up as many bridges are, would amount to a lateral thrust of no less than 100 tons; and this load would be applied in the worst possible manner, i.e., in a series of shocks. There have been many cases in this country where bridges have been blown down; and a case recently occurred where an iron railroad bridge of 180 feet span, and 30 feet high, and presenting apparently almost no surface to the wind, was blown so much out of line that the track had to be shifted. The recent terrible disaster at the Firth of Tay was, no doubt, due to this cause. At the time of the Tariffville catastrophe, it was gravely stated at the coroner's inquest, and by railroad officers who claimed to know about such things, that the disaster was caused by the tremendous weight of two locomotives which were coupled together, and it was stated that one engine would have passed in safety; and directly afterwards the superintendent of a prominent railroad in New England issued an order forbidding two engines connected to pass over any iron bridges. It is all very well for a company to issue such an order, so far as it may give the public to understand that it is determined to use every precaution against disaster; but such an order may have the effect of creating a distrust which really ought not to exist. If a railway bridge is not entirely safe for two engines, it is certainly entirely unsafe for one engine and the train following; the only saving in weight by taking off one engine being the difference between the weight of that engine and the weight of the cars that would occupy the same room. For example, a bridge of 200 feet span will weigh 1,500 pounds per lineal foot. An engine and its tender will weigh 60 tons in a length of 50 feet, and a loaded freight-train may easily weigh 2/3 of a ton per lineal foot. The total weight of the span, with two engines, and the rest of the bridge covered with loaded freight-cars, would thus be
PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   >>  



Top keywords:
weight
 
bridge
 

engine

 

bridges

 

disaster

 

engines

 

railroad

 

country

 

pounds

 
loaded

circular
 

freight

 

stated

 

issued

 

railway

 
lineal
 

recently

 

locomotives

 
tremendous
 

public


company

 

superintendent

 

connected

 

prominent

 
forbidding
 

England

 

directly

 

safety

 

coupled

 

passed


saving
 
tender
 
occupy
 

length

 

covered

 
easily
 

difference

 

effect

 

creating

 
distrust

determined

 
precaution
 

caused

 

taking

 

unsafe

 
understand
 
square
 
wooden
 

tornado

 
uncommon