FREE BOOKS

Author's List




PREV.   NEXT  
|<   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125  
126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   >>   >|  
lish, who had been beaten by the Germans in the dye business where they had the start, were determined not to lose in this. Prof. W.H. Perkin, of Manchester University, was one of the most eager, for he was inspired by a personal grudge against the Germans as well as by patriotism and scientific zeal. It was his father who had, fifty years before, discovered mauve, the first of the anilin dyes, but England could not hold the business and its rich rewards went over to Germany. So in 1909 a corps of chemists set to work under Professor Perkin in the Manchester laboratories to solve the problem of synthetic rubber. What reagent could be found that would reverse the reaction and convert the liquid isoprene into the solid rubber? It was discovered, by accident, we may say, but it should be understood that such advantageous accidents happen only to those who are working for them and know how to utilize them. In July, 1910, Dr. Matthews, who had charge of the research, set some isoprene to drying over metallic sodium, a common laboratory method of freeing a liquid from the last traces of water. In September he found that the flask was filled with a solid mass of real rubber instead of the volatile colorless liquid he had put into it. Twenty years before the discovery would have been useless, for sodium was then a rare and costly metal, a little of it in a sealed glass tube being passed around the chemistry class once a year as a curiosity, or a tiny bit cut off and dropped in water to see what a fuss it made. But nowadays metallic sodium is cheaply produced by the aid of electricity. The difficulty lay rather in the cost of the raw material, isoprene. In industrial chemistry it is not sufficient that a thing can be made; it must be made to pay. Isoprene could be obtained from turpentine, but this was too expensive and limited in supply. It would merely mean the destruction of pine forests instead of rubber forests. Starch was finally decided upon as the best material, since this can be obtained for about a cent a pound from potatoes, corn and many other sources. Here, however, the chemist came to the end of his rope and had to call the bacteriologist to his aid. The splitting of the starch molecule is too big a job for man; only the lower organisms, the yeast plant, for example, know enough to do that. Owing perhaps to the _entente cordiale_ a French biologist was called into the combination, Professor Fernbach, of the Pasteur
PREV.   NEXT  
|<   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125  
126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   >>   >|  



Top keywords:

rubber

 

isoprene

 

sodium

 

liquid

 

forests

 

metallic

 

chemistry

 

obtained

 
discovered
 

material


Professor
 

business

 

Manchester

 
Perkin
 

Germans

 
cordiale
 
difficulty
 

electricity

 

French

 

called


biologist

 

cheaply

 
produced
 

entente

 
industrial
 

sealed

 

curiosity

 

passed

 
Pasteur
 

sufficient


combination

 

dropped

 

Fernbach

 

nowadays

 

Starch

 

finally

 

decided

 

chemist

 
sources
 
potatoes

bacteriologist

 

expensive

 

organisms

 

turpentine

 

Isoprene

 

limited

 

starch

 

destruction

 

splitting

 

molecule