FREE BOOKS

Author's List




PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  
ss is broken with a slight jar provided a groove has been filed in its surface. Numerous other instances might be cited to prove the value of the groove. Elasticity in rock is a pronounced feature, which varies to a greater or less extent; but it is always more or less present. A sandstone has recently been found which possesses the property of elasticity to such an extent that it may be bent like a thin piece of steel. When a blast is made in the new form of hole the stone is under high tension, and being elastic it will naturally pull apart on such lines of weakness as grooves, especially when they are made, as is usually the case in this system, in a direction at right angles with the lines of least resistance. Horizontal holes are frequently put in and artificial beds made by "lofting." In such cases where the rock has a "rift" parallel with the bed, one hole about half way through is sufficient for a block about 15 ft. square, but in "liver" rock the holes must be drilled nearly through the block and the size of the block first reduced. A more difficult application of the system, and one requiring greater care in its successful use, is where the block of stone is so situated that both ends are not free, one of them being solidly fixed in the quarry wall. A simple illustration of a case of this kind is a stone step on a stairway which leads up and along a wall, Fig. 11. Each step has one end fixed to the wall and the other free. Each step is also free on top, on the bottom and on the face, but fixed at the back. We now put one of the new form of holes in the corner at the junction of the step and the wall. The shape of the hole is as shown in Fig. 12. [Illustration: FIG. 11.] It is here seen that the grooves are at right angles with each other, and the block of stone is sheared by a break made opposite and parallel with the bench, as in the previous case, and an additional break made at right angles with the bench and at the fixed end of the block. Sometimes a corner break is made by putting in two of the regular V-shaped holes in the lines of the proposed break and without the use of the corner hole. A useful application of this system is in splitting up large masses of loose stone. For this purpose the V-shaped grooves are sometimes cut in four positions and breaks are made in four directions radiating from the center of the hole as shown in Fig. 12. In this way a block is divided into four rectangular pi
PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  



Top keywords:

corner

 

grooves

 

system

 

angles

 

greater

 

parallel

 
application
 

groove

 

extent

 
shaped

stairway

 

solidly

 

quarry

 

simple

 
illustration
 

bottom

 
sheared
 

purpose

 

splitting

 

masses


positions
 

breaks

 

rectangular

 

divided

 

center

 
directions
 

radiating

 

Illustration

 

junction

 

situated


regular

 

proposed

 

putting

 

Sometimes

 

opposite

 
previous
 

additional

 
elasticity
 

property

 

possesses


sandstone

 
recently
 

tension

 

present

 

surface

 

Numerous

 
provided
 

broken

 
slight
 
instances