FREE BOOKS

Author's List




PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   >>   >|  
co-operate in effecting an enormous enhancement both in the insulation and in the carrying capacity of the wire. As an example of recent work in ocean telegraphy let us glance at the cable laid in 1894, by the Commercial Cable Company of New York. It unites Cape Canso, on the northeastern coast of Nova Scotia, to Waterville, on the southwestern coast of Ireland. The central portion of this cable much resembles that of its predecessor in 1866. Its exterior armour of steel wires is much more elaborate. The first part of Fig. 59 shows the details of manufacture: the central copper core is covered with gutta-percha, then with jute, upon which the steel wires are spirally wound, followed by a strong outer covering. For the greatest depths at sea, type _A_ is employed for a total length of 1,420 miles; the diameter of this part of the cable is seven-eighths of an inch. As the water lessens in depth the sheathing increases in size until the diameter of the cable becomes one and one-sixteenth inches for 152 miles, as type _B_. The cable now undergoes a third enlargement, and then its fourth and last proportions are presented as it touches the shore, for a distance of one and three-quarter miles, where type _C_ has a diameter of two and one-half inches. The weights of material used in this cable are: copper wire, 495 tons; gutta-percha, 315 tons; jute yarn, 575 tons; steel wire, 3,000 tons; compound and tar, 1,075 tons; total, 5,460 tons. The telegraph-ship _Faraday_, specially designed for cable-laying, accomplished the work without mishap. Electrical science owes much to the Atlantic cables, in particular to the first of them. At the very beginning it banished the idea that electricity as it passes through metallic conductors has anything like its velocity through free space. It was soon found, as Professor Mendenhall says, "that it is no more correct to assign a definite velocity to electricity than to a river. As the rate of flow of a river is determined by the character of its bed, its gradient, and other circumstances, so the velocity of an electric current is found to depend on the conditions under which the flow takes place."[2] Mile for mile the original Atlantic cable had twenty times the retarding effect of a good aerial line; the best recent cables reduce this figure by nearly one-half. In an extreme form, this slowing down reminds us of the obstruction of light as it enters the atmosphere of the earth, of the fur
PREV.   NEXT  
|<   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54  
55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   >>   >|  



Top keywords:
diameter
 

velocity

 
electricity
 

percha

 
Atlantic
 

inches

 

cables

 
copper
 

central

 

recent


passes

 

metallic

 

conductors

 
telegraph
 

Faraday

 

specially

 

compound

 

designed

 

laying

 

beginning


banished

 

science

 

accomplished

 
mishap
 

Electrical

 

determined

 

aerial

 

reduce

 

figure

 
effect

twenty

 

retarding

 

enters

 
atmosphere
 
obstruction
 

reminds

 

extreme

 

slowing

 

original

 
character

definite

 

assign

 

Mendenhall

 

correct

 

gradient

 

conditions

 

depend

 

circumstances

 

electric

 
current