FREE BOOKS

Author's List




PREV.   NEXT  
|<   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251  
252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   >>  
lectricity is passed over a conducting line to a distant station, where it is either directly utilized for the purpose of lighting, heating, chemical decomposition, etc., or indirectly utilized for the purpose of obtaining mechanical power for driving machinery, by passing it through an electric motor. The electric transmission of power has been successfully made in California over a distance of some 220 miles, at a pressure on transmission lines of 50,000 volts. The high pressures required for the economical use of transmission lines necessitates the employment of transformers at each end of the line; namely, step-up transformers at the transmitting end, to raise the voltage delivered by the generators, and step-down transformers, at the receiving end, to lower it for use in the various translating devices. These transformers are employed in connection with alternating-current dynamos. Faraday not only gave to the world the first electric generator, but also the first transformer, and one of the first electric motors, and without these gifts the electric transmission of power over long distances, which has justly been regarded as one of the most marvellous achievements of our age, would have been an impossibility. In high-tension circuits over which such pressures as 50,000 volts is transmitted, no little difficulty is experienced from leakage and consequent loss of energy. This leakage occurs both between the line conductors and at the insulators placed on the pole lines forming the line circuit. The insulators are made either of glass or porcelain, and are of a peculiar form known as triple petticoat pattern. The loss on such lines, due to leakage between wires, is greater than that which takes place at the pole insulators, and is diminished by keeping the circuit wires as far apart as possible. In the early history of the art, electric transmission of power was effected by means of direct-current generators and motors,--generators and motors through which the current always passed in the same direction. Such generators and motors, however, possessed inconveniences that prevented extensive commercial transmission of power, since, as we have seen, high pressure was necessary for efficiency in such transmission, and the collecting-brushes and commutators employed in all direct-current generators and motors to carry the current from the machine or to the motor, were a constant source of trouble and danger. When
PREV.   NEXT  
|<   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251  
252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   >>  



Top keywords:
transmission
 

electric

 

motors

 

current

 

generators

 

transformers

 

leakage

 

insulators

 

pressures

 
direct

employed

 

circuit

 

utilized

 

pressure

 

purpose

 

passed

 

commutators

 
forming
 
machine
 
porcelain

triple

 

difficulty

 

brushes

 

peculiar

 

source

 

occurs

 

consequent

 

energy

 
trouble
 

conductors


experienced
 
petticoat
 

danger

 
constant
 
efficiency
 
commercial
 

effected

 

history

 
direction
 
possessed

inconveniences
 

prevented

 

extensive

 
greater
 
collecting
 

keeping

 

diminished

 

pattern

 

required

 

economical