FREE BOOKS

Author's List




PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   >>  
s of interest to see whether the tidal phenomena may not have a wider scope; whether they may not, for instance, have determined the formation of the planets by birth from the sun, just as the moon seems to have originated by birth from the earth. Our first presumption, that the cases are analogous, is not however justified when the facts are carefully inquired into. A principle which I have not hitherto discussed here assumes prominence, and therefore we shall devote our attention to it for a few minutes. Let us understand what we mean by the solar system. There is first the sun at the centre, which preponderates over all the other bodies so enormously, as shown in Fig. 4, in which the earth and the sun are placed side by side for comparison. There is then the retinue of planets, among the smaller of which our earth takes its place, a view of the comparative sizes of the planets being shown in Fig. 5. [Illustration: Fig. 4.--Comparative sizes of Earth and Sun.] Not to embarrass ourselves with the perplexities of a problem so complicated as our solar system is in its entirety, we shall for the sake of clear reasoning assume an ideal system, consisting of a sun and a large planet--in fact, such as our own system would be if we could withdraw from it all other bodies, leaving the sun and Jupiter only remaining. We shall suppose, of course, that the sun is much larger than the planet, in fact, it will be convenient to keep in mind the relative masses of the sun and Jupiter, the weight of the planet being less than one-thousandth part of the sun. We know, of course, that both of those bodies are rotating upon their axes, and the one is revolving around the other; and for simplicity we may further suppose that the axes of rotation are perpendicular to the plane of revolution. In bodies so constituted tides will be manifested. Jupiter will raise tides in the sun, the sun will raise tides in Jupiter. If the rotation of each body be performed in a less period than that of the revolution (the case which alone concerns us), then the tides will immediately operate in their habitual manner as a brake for the checking of rotation. The tides raised by the sun on Jupiter will tend therefore to lengthen Jupiter's day; the tides raised on the sun by Jupiter will tend to augment the sun's period of rotation. Both Jupiter and the sun will therefore lose some moment of momentum. We cannot, however, repeat too often the dynamical trut
PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   >>  



Top keywords:

Jupiter

 

bodies

 
rotation
 

system

 

planet

 

planets

 

period

 

revolution

 

suppose

 

raised


rotating

 
convenient
 
remaining
 

leaving

 
withdraw
 
larger
 

thousandth

 

weight

 

masses

 

relative


manifested

 

augment

 

lengthen

 

checking

 

moment

 

dynamical

 

repeat

 

momentum

 

manner

 
habitual

constituted

 

perpendicular

 
simplicity
 

concerns

 

immediately

 
operate
 

performed

 
revolving
 

principle

 
inquired

carefully

 

hitherto

 

discussed

 
minutes
 

attention

 

devote

 
assumes
 

prominence

 

justified

 
analogous