FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   >>  
to the angle at which the planes are inclined; it will be seen at a glance that we will have less friction by employing the smaller incline, whereas with the larger one the motive power is employed through a greater distance on the object to be moved. The smaller the angle the more energetic will the movement be; the grinding of the angles and fit of the pivots, etc., also increases in importance. An actual lift of 8 1/2deg. satisfies the conditions imposed very well. We have before seen that both on account of the unlocking and the lifting leverage of the pallet arms, it would be advisable to make them narrow both in the equidistant and circular escapement. We will now study the question from the standpoint of the lift, in so far as the wheel is concerned. [Illustration: Fig. 8.] It is self-evident that a narrow pallet requires a wide tooth, and a wide pallet a narrow or thin tooth wheel; in the ratchet wheel we have a metal point passing over a jeweled plane. The friction is at its minimum, because there is less adhesion than with the club tooth, but we must emphasize the fact that we require a greater angle in proportion on the pallets in this escapement than with the narrow pallets and wider tooth. This seems to be a point which many do not thoroughly comprehend, and we would advise a close study of Fig. 8, which will make it perfectly clear, as we show both a wide and a narrow pallet. GH, represents the primitive, which in this figure is also the real diameter of the escape wheel. In measuring the lifting angles for the pallets, our starting point is _always_ from the tangents AC and AD. The tangents are straight lines, but the wheel describes the circle GH, therefore they must deviate from one another, and the closer to the center A the discharging edge of the engaging pallet reaches, the greater does this difference become; and in the same manner the further the discharging edge of the disengaging pallet is from the center A the greater it is. This shows that the loss is greater in the equidistant than in the circular escapement. After this we will designate this difference as the "loss." In order to illustrate it more plainly we show the widest pallet--the English--in equidistant form. This gives another reason why the English lever should only be made with circular pallets, as we have seen that the wider the pallet the greater the loss. The loss is measured at the intersection of the path of the discharging
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   >>  



Top keywords:
pallet
 

greater

 

narrow

 
pallets
 

equidistant

 

circular

 
discharging
 

escapement

 

center

 
difference

lifting

 

tangents

 

friction

 
angles
 
smaller
 

English

 

figure

 

primitive

 
represents
 

diameter


escape

 

measuring

 

measured

 

intersection

 

comprehend

 

perfectly

 

advise

 

deviate

 

disengaging

 

closer


engaging

 

reaches

 
manner
 

circle

 

designate

 
reason
 

straight

 

widest

 

illustrate

 

describes


plainly

 

starting

 
requires
 

increases

 

importance

 
pivots
 

grinding

 
actual
 
imposed
 
conditions