FREE BOOKS

Author's List




PREV.   NEXT  
|<   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130  
131   132   133   134   >>  
included a meter to determine the current actually consumed. The success of the system was complete, and as fast as lamps and generators could be produced they were installed to give a service at once recognized as superior to any other form of lighting. By 1885 the Edison lighting system was commercially developed in all its essentials, though still subject to many improvements and capable of great enlargement, and soon Edison sold out his interests in it and turned his great mind to other inventions. The inventive ingenuity of others brought in time better and more economical incandescent lamps. From the filaments of bamboo fiber the next step was to filaments of cellulose in the form of cotton, duly prepared and carbonized. Later (1905) came the metalized carbon filament and finally the employment of tantalum or tungsten. The tungsten lamps first made were very delicate, and it was not until W. D. Coolidge, in the research laboratories of the General Electric Company at Schenectady, invented a process for producing ductile tungsten that they became available for general use. The dynamo and the central power station brought the electric motor into action. The dynamo and the motor do precisely opposite things. The dynamo converts mechanical energy into electric energy. The motor transforms electric energy into mechanical energy. But the two work in partnership and without the dynamo to manufacture the power the motor could not thrive. Moreover, the central station was needed to distribute the power for transportation as well as for lighting. The first motors to use Edison station current were designed by Frank J. Sprague, a graduate of the Naval Academy, who had worked with Edison, as have many of the foremost electrical engineers of America and Europe. These small motors possessed several advantages over the big steam engine. They ran smoothly and noiselessly on account of the absence of reciprocating parts. They consumed current only when in use. They could be installed and connected with a minimum of trouble and expense. They emitted neither smell nor smoke. Edison built an experimental electric railway line at Menlo Park in 1880 and proved its practicability. Meanwhile, however, as he worked on his motors and dynamos, he was anticipated by others in some of his inventions. It would not be fair to say that Edison and Sprague alone developed the electric railway, for there were several others who made important
PREV.   NEXT  
|<   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130  
131   132   133   134   >>  



Top keywords:

Edison

 

electric

 

dynamo

 

energy

 

lighting

 

station

 

motors

 

tungsten

 
current
 

consumed


central

 

filaments

 

system

 

Sprague

 

railway

 

installed

 

mechanical

 
inventions
 

brought

 

developed


worked
 

Academy

 

graduate

 

needed

 

important

 

partnership

 

transforms

 

transportation

 

distribute

 

foremost


manufacture

 

thrive

 

Moreover

 
designed
 

trouble

 
expense
 

emitted

 

experimental

 

practicability

 

Meanwhile


dynamos

 
proved
 
anticipated
 
minimum
 

connected

 

possessed

 
advantages
 

engineers

 

America

 

Europe