FREE BOOKS

Author's List




PREV.   NEXT  
|<   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158  
159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   >>   >|  
ifying climate, not so much by direct radiation as by diffusion through the medium of the air. This very obvious importance of aerial currents led to their practical study long before meteorology had any title to the rank of science, and Dalton's explanation of the trade-winds had laid the foundation for a science of wind dynamics before the beginning of the nineteenth century. But no substantial further advance in this direction was effected until about 1827, when Heinrich W. Dove, of Konigsberg, afterwards to be known as perhaps the foremost meteorologist of his generation, included the winds among the subjects of his elaborate statistical studies in climatology. Dove classified the winds as permanent, periodical, and variable. His great discovery was that all winds, of whatever character, and not merely the permanent winds, come under the influence of the earth's rotation in such a way as to be deflected from their course, and hence to take on a gyratory motion--that, in short, all local winds are minor eddies in the great polar-equatorial whirl, and tend to reproduce in miniature the character of that vast maelstrom. For the first time, then, temporary or variable winds were seen to lie within the province of law. A generation later, Professor William Ferrel, the American meteorologist, who had been led to take up the subject by a perusal of Maury's discourse on ocean winds, formulated a general mathematical law, to the effect that any body moving in a right line along the surface of the earth in any direction tends to have its course deflected, owing to the earth's rotation, to the right hand in the northern and to the left hand in the southern hemisphere. This law had indeed been stated as early as 1835 by the French physicist Poisson, but no one then thought of it as other than a mathematical curiosity; its true significance was only understood after Professor Ferrel had independently rediscovered it (just as Dalton rediscovered Hadley's forgotten law of the trade-winds) and applied it to the motion of wind currents. Then it became clear that here is a key to the phenomena of atmospheric circulation, from the great polar-equatorial maelstrom which manifests itself in the trade-winds to the most circumscribed riffle which is announced as a local storm. And the more the phenomena were studied, the more striking seemed the parallel between the greater maelstrom and these lesser eddies. Just as the entire atm
PREV.   NEXT  
|<   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158  
159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   >>   >|  



Top keywords:
maelstrom
 

eddies

 

direction

 
rediscovered
 
motion
 
generation
 

character

 

variable

 

permanent

 

meteorologist


rotation
 
deflected
 

phenomena

 

currents

 

equatorial

 

mathematical

 

Ferrel

 

Professor

 

Dalton

 

science


subject
 

hemisphere

 

southern

 
northern
 

American

 
discourse
 
effect
 

moving

 

general

 

surface


formulated

 

perusal

 
curiosity
 
circumscribed
 

riffle

 
announced
 

manifests

 

atmospheric

 

circulation

 

studied


lesser

 

entire

 
greater
 

striking

 
parallel
 
thought
 

Poisson

 

physicist

 
stated
 

French