FREE BOOKS

Author's List




PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   >>   >|  
in one of coal, and coal can be excavated for at least two months more of the year than peat. It is asserted by some, that, because peat can be condensed so as to approach anthracite in specific gravity, it must, in the same ratio, approach the latter in heating power. Its effective heating power is, indeed, considerably augmented by condensation, but no mechanical treatment can increase its percentage of carbon or otherwise alter its chemical composition; hence it must forever remain inferior to anthracite. The composition and density of the best condensed peat is compared with that of hard wood and anthracite in the following statement:-- _In 100 _Carbon._ _Hydrogen._ _Oxygen and _Ash._ _Water._ _Specific parts._ Nitrogen._ Gravity._ Wood, 39.6 4.8 34.8 0.8 20.0 0.75 Condensed peat 47.2 4.9 22.9 5.0 20.0 1.20 Anthracite 91.3 2.9 2.8 3.0 1.40 In combustion in ordinary fires, the _water_ of the fuel is a source of waste, since it consumes heat in acquiring the state of vapor. This is well seen in the comparison of the same kind of peat in different states of dryness. Thus, in the table of Gysser, (page 97) Weber's condensed peat, containing 10 _per cent._ of moisture, surpasses in heating effect that containing 25 _per cent._ of moisture, by nearly one-half. The _oxygen_ is a source of waste, for heat as developed from fuel, is chiefly a result of the chemical union of atmospheric or free oxygen, with the carbon and hydrogen of the combustible. The oxygen of the fuel, being already combined with carbon and hydrogen, not only cannot itself contribute to the generation of heat, but neutralizes the heating effect of those portions of the carbon and hydrogen of the fuel with which it remains in combination. The quantity of heating effect thus destroyed, cannot, however, be calculated with certainty, because physical changes, viz: the conversion of solids into gases, not to speak of secondary chemical transformations, whose influence cannot be estimated, enter into the computation. _Nitrogen_ and ash are practically indifferent in the burning process, and simply impair the heating value of fuel in as far as they occupy space in it and make a portion of its weight, to the exclusion of combustible matter. Again, as regards density, peat is, in general
PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   >>   >|  



Top keywords:

heating

 
carbon
 

chemical

 

condensed

 

hydrogen

 

oxygen

 

anthracite

 

effect

 

composition

 

combustible


density

 

approach

 

source

 

moisture

 

Nitrogen

 

contribute

 

generation

 

neutralizes

 

combined

 

atmospheric


result

 

chiefly

 

developed

 

surpasses

 

conversion

 

process

 

simply

 

impair

 

burning

 

indifferent


computation

 

practically

 
matter
 
general
 

exclusion

 

weight

 

occupy

 

portion

 

estimated

 

destroyed


calculated

 

certainty

 

quantity

 

portions

 

remains

 

combination

 

physical

 

secondary

 

transformations

 
influence