FREE BOOKS

Author's List




PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  
lue, but if it requires a mortar and pestle to break, its quality is pronounced good. From an analysis of this singular bark, that of old trees has been found to give 30.8 per cent of ash, and that of young 23.30 per cent. Of the different layers of old bark, the outer gave 17.15 per cent, the middle 37.7, and the inner 31. The wood of the tree, in comparison with the bark, is relatively poor in silex, the duramen of an old tree giving only 2.5 per cent of silex. * * * * * GLASS SPONGES. The natural history of sponges had, up to the middle of this century, been comparatively neglected. Until 1856, when Lieberkuhn published his treatise on sponges, very little or nothing had been written on the subject. Later, Haeckel did much to determine their exact nature, and it is now universally admitted that sponges form one of the connecting links between the animal and the vegetable kingdom. Sponges, generally considered, consist of fine porous tissue, covered, during life, with viscid, semi-liquid protoplasm, and are held in shape and strengthened by a more or less rigid skeleton, consisting chiefly of lime or silica. The tissue consists of a very fine network of threads, formed probably by gradual solidification of the threads of protoplasm. The inorganic skeleton is formed by larger and smaller crystals and crystalline threads. In the various families of sponges the quantity of inorganic matter varies greatly; some sponges are nearly devoid of an inorganic skeleton, while other families consist chiefly of lime or silica, the organic tissue being only rudimentarily developed. As observed in their natural state, sponges are apparently lifeless. When, however, a live sponge is placed in water containing some finely powdered pigment in suspension, it will be noticed that in regular, short intervals water is absorbed through the pores of the tissue and ejected again through larger openings, which are called "osculae." Following up these into the interior, we find them divided into numerous branches, the walls of which are, under the microscope, found to be covered with minute cells, fastened at one end only and oscillating continually. By means of these cells the sponge receives its nourishment. Sponges with very rigid inorganic skeletons may be divided into two classes--calcareous and silicious--according to whether the skeleton is chiefly composed of lime or silica. Our eng
PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  



Top keywords:

sponges

 

tissue

 
skeleton
 

inorganic

 

silica

 
threads
 

chiefly

 

consist

 

natural

 

Sponges


covered
 

protoplasm

 
larger
 

divided

 

families

 

formed

 

sponge

 
middle
 

observed

 

apparently


developed

 
solidification
 

gradual

 

lifeless

 

rudimentarily

 
quantity
 

matter

 
varies
 
greatly
 

devoid


crystalline
 

crystals

 

organic

 

smaller

 

continually

 

oscillating

 
receives
 

microscope

 

minute

 

fastened


nourishment

 

skeletons

 

composed

 
silicious
 
classes
 

calcareous

 

branches

 

regular

 

noticed

 

intervals