FREE BOOKS

Author's List




PREV.   NEXT  
|<   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217  
218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   >>   >|  
stem is situated.[35] Thus we should see a greater number of stars when we looked out through the _length_ of such a disc in any direction, than when we looked out through its _breadth_. This theory was, for a time, supposed to account quite reasonably for the Milky Way, and for the gradual increase in the number of stars in its vicinity. It is quite impossible to verify directly such a theory, for we know the actual distance of only about forty-three stars. We are unable, therefore, definitely to assure ourselves whether, as the grindstone theory presupposes, the stellar universe actually reaches out very much further from us in the direction of the Milky Way than in the other parts of the sky. The theory is clearly founded upon the supposition that the stars are more or less equal in size, and are scattered through space at fairly regular distances from each other. Brightness, therefore, had been taken as implying nearness to us, and faintness great distance. But we know to-day that this is not the case, and that the stars around us are, on the other hand, of various degrees of brightness and of all orders of size. Some of the faint stars--for instance, the galloping star in Pictor--are indeed nearer to us than many of the brighter ones. Sirius, on the other hand, is twice as far off from us as [a] Centauri, and yet it is very much brighter; while Canopus, which in brightness is second only to Sirius out of the whole sky, is too far off for its distance to be ascertained! It must be remembered that no parallax had yet been found for any star in the days of Herschel, and so his estimations of stellar distances were necessarily of a very circumstantial kind. He did not, however, continue always to build upon such uncertain ground; but, after some further examination of the Milky Way, he gave up his idea that the stars were equally disposed in space, and eventually abandoned the grindstone theory. Since we have no means of satisfactorily testing the matter, through finding out the various distances from us at which the stars are really placed, one might just as well go to the other extreme, and assume that the thickening of stars in the region of the Milky Way is not an effect of perspective at all, but that the stars in that part of the sky are actually more crowded together than elsewhere--a thing which astronomers now believe to be the case. Looked at in this way, the shape of the stellar universe might be that
PREV.   NEXT  
|<   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217  
218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   >>   >|  



Top keywords:

theory

 

distance

 
stellar
 

distances

 
brightness
 

grindstone

 

brighter

 
Sirius
 

universe

 

looked


direction

 

number

 

crowded

 
necessarily
 

circumstantial

 

effect

 
perspective
 

estimations

 

Looked

 

remembered


ascertained
 

astronomers

 
parallax
 
Herschel
 

disposed

 
equally
 

finding

 

satisfactorily

 

abandoned

 

testing


eventually

 

matter

 

uncertain

 
ground
 

region

 

continue

 

thickening

 

assume

 

examination

 

extreme


actual

 

directly

 
verify
 

vicinity

 

impossible

 

presupposes

 

reaches

 

assure

 

unable

 
increase