FREE BOOKS

Author's List




PREV.   NEXT  
|<   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161  
162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   >>   >|  
all his innovations is one that seems much less striking. It is the answer to the question, What is the relation in bulk between a sphere and its circumscribing cylinder? Archimedes finds that the ratio is simply two to three. We are not informed as to how he reached his conclusion, but an obvious method would be to immerse a ball in a cylindrical cup. The experiment is one which any one can make for himself, with approximate accuracy, with the aid of a tumbler and a solid rubber ball or a billiard-ball of just the right size. Another geometrical problem which Archimedes solved was the problem as to the size of a triangle which has equal area with a circle; the answer being, a triangle having for its base the circumference of the circle and for its altitude the radius. Archimedes solved also the problem of the relation of the diameter of the circle to its circumference; his answer being a close approximation to the familiar 3.1416, which every tyro in geometry will recall as the equivalent of pi. Numerous other of the studies of Archimedes having reference to conic sections, properties of curves and spirals, and the like, are too technical to be detailed here. The extent of his mathematical knowledge, however, is suggested by the fact that he computed in great detail the number of grains of sand that would be required to cover the sphere of the sun's orbit, making certain hypothetical assumptions as to the size of the earth and the distance of the sun for the purposes of argument. Mathematicians find his computation peculiarly interesting because it evidences a crude conception of the idea of logarithms. From our present stand-point, the paper in which this calculation is contained has considerable interest because of its assumptions as to celestial mechanics. Thus Archimedes starts out with the preliminary assumption that the circumference of the earth is less than three million stadia. It must be understood that this assumption is purely for the sake of argument. Archimedes expressly states that he takes this number because it is "ten times as large as the earth has been supposed to be by certain investigators." Here, perhaps, the reference is to Eratosthenes, whose measurement of the earth we shall have occasion to revert to in a moment. Continuing, Archimedes asserts that the sun is larger than the earth, and the earth larger than the moon. In this assumption, he says, he is following the opinion of the majority o
PREV.   NEXT  
|<   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161  
162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   >>   >|  



Top keywords:

Archimedes

 

problem

 

assumption

 
circumference
 
circle
 

answer

 

sphere

 

triangle

 
relation
 

solved


larger
 

number

 

argument

 

assumptions

 

reference

 

contained

 

detail

 

distance

 
calculation
 

hypothetical


required

 

grains

 

purposes

 

present

 

evidences

 

Mathematicians

 

computation

 

making

 

peculiarly

 

conception


logarithms

 

interesting

 
occasion
 

measurement

 

Eratosthenes

 

revert

 

moment

 
opinion
 
majority
 

Continuing


asserts

 
investigators
 

supposed

 

preliminary

 
million
 
stadia
 

starts

 

interest

 

celestial

 

mechanics