FREE BOOKS

Author's List




PREV.   NEXT  
|<   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296  
>>  
saline substances, even fixed alkali, are volatilized in a few seconds. 6. Gold, silver, and probably platina, are slowly volatilized without any particular phenomenon. 7. All other metallic substances, except mercury, become oxydated, though placed upon charcoal, and burn with different coloured flames, and at last dissipate altogether. 8. The metallic oxyds likewise all burn with flames. This seems to form a distinctive character for these substances, and even leads me to believe, as was suspected by Bergman, that barytes is a metallic oxyd, though we have not hitherto been able to obtain the metal in its pure or reguline state. 9. Some of the precious stones, as rubies, are capable of being softened and soldered together, without injuring their colour, or even diminishing their weights. The hyacinth, tho' almost equally fixed with the ruby, loses its colour very readily. The Saxon and Brasilian topaz, and the Brasilian ruby, lose their colour very quickly, and lose about a fifth of their weight, leaving a white earth, resembling white quartz, or unglazed china. The emerald, chrysolite, and garnet, are almost instantly melted into an opake and coloured glass. 10. The diamond presents a property peculiar to itself; it burns in the same manner with combustible bodies, and is entirely dissipated. There is yet another manner of employing oxygen gas for considerably increasing the force of fire, by using it to blow a furnace. Mr Achard first conceived this idea; but the process he employed, by which he thought to dephlogisticate, as it is called, atmospheric air, or to deprive it of azotic gas, is absolutely unsatisfactory. I propose to construct a very simple furnace, for this purpose, of very refractory earth, similar to the one represented Pl. XIII. Fig. 4. but smaller in all its dimensions. It is to have two openings, as at E, through one of which the nozle of a pair of bellows is to pass, by which the heat is to be raised as high as possible with common air; after which, the stream of common air from the bellows being suddenly stopt, oxygen gas is to be admitted by a tube, at the other opening, communicating with a gazometer having the pressure of four or five inches of water. I can in this manner unite the oxygen gas from several gazometers, so as to make eight or nine cubical feet of gas pass through the furnace; and in this way I expect to produce a heat greatly more intense than any hitherto known. T
PREV.   NEXT  
|<   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296  
>>  



Top keywords:

oxygen

 

manner

 
substances
 

metallic

 
furnace
 

colour

 

bellows

 
common
 

Brasilian

 

hitherto


coloured

 

volatilized

 

flames

 
expect
 

employed

 

thought

 
produce
 

process

 

greatly

 

dephlogisticate


called
 

azotic

 
absolutely
 
cubical
 

deprive

 
atmospheric
 

suddenly

 

intense

 

conceived

 

employing


dissipated

 

considerably

 

increasing

 
Achard
 

unsatisfactory

 

inches

 

stream

 

openings

 

raised

 

gazometer


pressure

 

communicating

 
opening
 

simple

 

purpose

 

refractory

 

similar

 

admitted

 

propose

 
construct