FREE BOOKS

Author's List




PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   >>  
ncreased by rise of temperature, but also the average relative loss by corrosion of the negative to that of the positive one was increased from 3.11 to 6.32. The explanation most consistent with all the various results and conclusions is a kinetic one: That metals and electrolytes are throughout their masses in a state of molecular vibration. That the molecules of those substances, being frictionless bodies in a frictionless medium, and their motion not being dissipated by conduction or radiation, continue incessantly in motion until some cause arises to prevent them. That each metal (or electrolyte), when unequally heated, has to a certain extent an unlike class of motions in its differently heated parts, and behaves in those parts somewhat like two metals (or electrolytes), and those unlike motions are enabled, through the intermediate conducting portion of the substance, to render those parts electro-polar. That every different metal and electrolyte has a different class of motions, and in consequence of this, they also, by contact alone with each other at the same temperature, become electro-polar. The molecular motion of each different substance also increases at a different rate by rise of temperature. This theory is equally in agreement with the chemico-electric results. In accordance with it, when in the case of a metal and an electrolyte, the two classes of motions are sufficiently unlike, chemical corrosion of the metal by the liquid takes place, and the voltaic current originated by inherent molecular motion, under the condition of contact, is maintained by the portions of motion lost by the metal and liquid during the act of uniting together. Corrosion therefore is an effect of molecular motion, and is one of the modes by which that motion is converted into and produces electric current. In accordance with this theory, if we take a thermo-electric pair consisting of a non-corrodible metal and an electrolyte (the two being already electro-polar by mutual contact), and heat one of their points of contact, the molecular motions of the heated end of each substance at the junction are altered; and as thermo-electric energy in such combinations usually increases by rise of temperature, the metal and liquid, each singly, usually becomes more electro polar. In such a case the unequally heated metal behaves to some extent like two metals, and the unequally heated liquid like two liquids, and so the thermo-elec
PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   >>  



Top keywords:
motion
 

heated

 

motions

 
molecular
 

electrolyte

 

electric

 
liquid
 

electro

 

temperature

 
contact

thermo

 

unlike

 

metals

 
substance
 
unequally
 

current

 

increases

 

theory

 
accordance
 

extent


behaves

 

frictionless

 

electrolytes

 

corrosion

 

results

 

portions

 

uniting

 

effect

 

Corrosion

 

maintained


chemical

 

sufficiently

 
classes
 

negative

 

inherent

 
originated
 

relative

 

voltaic

 

condition

 

produces


combinations

 

energy

 
junction
 

altered

 

ncreased

 
singly
 

liquids

 
points
 
average
 
consisting