FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
rn hemisphere. Its precedence over its rivals Vega and Capella, long in dispute, has been settled by the Harvard photometry. You notice that the color of Arcturus, when it has not risen far above the horizon, is a yellowish red, but when the star is near mid-heaven the color fades to light yellow. The hue is possibly variable, for it is recorded that in 1852 Arcturus appeared to have nearly lost its color. If it should eventually turn white, the fact would have an important bearing upon the question whether Sirius was, as alleged, once a red or flame-colored star. But let us sit here in the starlight, for the night is balmy, and talk about Arcturus, which is perhaps actually the greatest sun within the range of terrestrial vision. Its parallax is so minute that the consideration of the tremendous size of this star is a thing that the imagination can not placidly approach. Calculations, based on its assumed distance, which show that it _outshines the sun several thousand times_, may be no exaggeration of the truth! It is easy to make such a calculation. One of Dr. Elkin's parallaxes for Arcturus is 0.018". That is to say, the displacement of Arcturus due to the change in the observer's point of view when he looks at the star first from one side and then from the other side of the earth's orbit, 186,000,000 miles across, amounts to only eighteen one-thousandths of a second of arc. We can appreciate how small that is when we reflect that it is about equal to the apparent distance between the heads of two pins placed an inch apart and viewed from a distance of a hundred and eighty miles! Assuming this estimate of the parallax of Arcturus, let us see how it will enable us to calculate the probable size or light-giving power of the star as compared with the sun. The first thing to do is to multiply the earth's distance from the sun, which may be taken at 93,000,000 miles, by 206,265, the number of seconds of arc in a radian, the base of circular measure, and then divide the product by the parallax of the star. Performing the multiplication and division, we get the following: 19,182,645,000,000 / .018 = 1,065,702,500,000,000. The quotient represents miles! Call it, in round numbers, a thousand millions of millions of miles. This is about 11,400,000 times the distance from the earth to the sun. Now for the second part of the calculation: The amount of light received on the earth from some of the brighter stars has bee
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:

Arcturus

 

distance

 

parallax

 

millions

 

calculation

 
thousand
 

apparent

 

hundred

 

enable

 

calculate


probable
 

giving

 

reflect

 

eighty

 

Assuming

 

estimate

 

viewed

 
Capella
 

settled

 

dispute


rivals

 

precedence

 

thousandths

 

amounts

 

eighteen

 

hemisphere

 
compared
 
numbers
 

represents

 
quotient

brighter

 

received

 

amount

 
number
 

seconds

 

radian

 

multiply

 

circular

 
division
 

multiplication


Performing

 

measure

 

divide

 

product

 

Harvard

 

starlight

 
variable
 
possibly
 

yellow

 

terrestrial