FREE BOOKS

Author's List




PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  
efficiency of drainage machinery is very largely a question of method of power application. The actual pump can be built to almost the same efficiency for any power application, and with the exception of the limited field of bailing with tanks, mechanical drainage is a matter of pumps. All pumps must be set below their load, barring a few possible feet of suction lift, and they are therefore perforce underground, and in consequence all power must be transmitted from the surface. Transmission itself means loss of power varying from 10 to 60%, depending upon the medium used. It is therefore the choice of transmission medium that largely governs the mechanical efficiency. SYSTEMS OF DRAINAGE.--The ideal pumping system for metal mines would be one which could be built in units and could be expanded or contracted unit by unit with the fluctuation in volume; which could also be easily moved to meet the differences of lifts; and in which each independent unit could be of the highest mechanical efficiency and would require but little space for erection. Such an ideal is unobtainable among any of the appliances with which the writer is familiar. The wide variations in the origin of power, in the form of transmission, and in the method of final application, and the many combinations of these factors, meet the demands for flexibility, efficiency, capital cost, and reliability in various degrees depending upon the environment of the mine. Power nowadays is generated primarily with steam, water, and gas. These origins admit the transmission of power to the pumps by direct steam, compressed air, electricity, rods, or hydraulic columns. DIRECT STEAM-PUMPS.--Direct steam has the disadvantage of radiated heat in the workings, of loss by the radiation, and, worse still, of the impracticability of placing and operating a highly efficient steam-engine underground. It is all but impossible to derive benefit from the vacuum, as any form of surface condenser here is impossible, and there can be no return of the hot soft water to the boilers. Steam-pumps fall into two classes, rotary and direct-acting; the former have the great advantage of permitting the use of steam expansively and affording some field for effective use of condensation, but they are more costly, require much room, and are not fool-proof. The direct-acting pumps have all the advantage of compactness and the disadvantage of being the most inefficient of pumping machin
PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  



Top keywords:
efficiency
 

direct

 

mechanical

 
transmission
 

application

 

method

 

pumping

 

surface

 
depending
 
medium

largely

 

acting

 

advantage

 

impossible

 

disadvantage

 

require

 

drainage

 

underground

 

workings

 
radiated

radiation
 

placing

 
derive
 

benefit

 

engine

 

efficient

 

operating

 
highly
 
impracticability
 

origins


generated
 

primarily

 

machinery

 

matter

 

compressed

 

DIRECT

 

vacuum

 

columns

 

hydraulic

 

electricity


Direct

 

condensation

 

costly

 
effective
 

exception

 

expansively

 

affording

 

inefficient

 

machin

 

compactness