FREE BOOKS

Author's List




PREV.   NEXT  
|<   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37  
38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   >>   >|  
ings have not required lining up for nine years. It is, however, a shaft that cannot be inspected except when in dry dock, and has to be disconnected from the propeller, and drawn inside for examination at periods suggested by experience. Serious accidents have occurred through want of attention to the examination of this shaft; when working in salt water, with liners of gun metal, galvanic action ensues, and extensive corrosion takes place in the iron at the ends of the brass liners, more especially if they are faced up at right angles to the shaft. Some engineers have the uncovered part of the shaft between the liners, inside the tube, protected against the sea water by winding over it tarred line. As this may give out and cause some trouble, by stopping the water space, I have not adopted it, and shall be pleased to have the experience of any seagoing engineer on this important matter. A groove round the shaft is formed, due to this action, and in some cases the shaft has broken inside the stern tube, breaking not only it, but tearing open the hull, resulting in the foundering of the vessel. Steel has been used for screw shafts, but has not been found so suitable, as it corrodes more rapidly in the presence of salt water and gun metal than iron, and unless protected by a solid liner for the most part of its length, a mechanical feat which has not yet been achieved in ordinary construction, as this liner would require to be 20 ft. long. I find it exceedingly difficult to get a liner of only 7 ft. long in one piece, and the majority of 6 ft. liners are fitted _in two pieces_. The joint of the two liners is rarely _watertight_, and many shafts have been destroyed by this method of fitting these liners. I trust that engine builders will make a step further in the fitting of these liners on these shafts, as it is against the interest of the _shipowner_ to keep ships in dry dock from such causes as defective liners, and I think it will be only a matter of time when the screw shaft will be completely protected from sea water, at least inside the stern tube; and when this is done, I would have no hesitation in using steel for screw shafts. Though an easier forging than a crank shaft, these shafts are often liable to flaws of a very serious character, owing to the contraction of the _mass_ of metal forming the coupling; the outside cooling first tears the center open, and when there is not much metal to turn off the face of
PREV.   NEXT  
|<   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37  
38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   >>   >|  



Top keywords:

liners

 

shafts

 

inside

 

protected

 
action
 

fitting

 

matter

 

experience

 

examination

 

fitted


mechanical
 

length

 
rarely
 
watertight
 

pieces

 

majority

 
construction
 

require

 
exceedingly
 
achieved

difficult

 

ordinary

 

center

 

Though

 
easier
 
coupling
 

hesitation

 

forging

 

character

 

liable


forming

 
completely
 

cooling

 

contraction

 

builders

 
method
 

engine

 

interest

 
defective
 

shipowner


destroyed

 

corrosion

 

extensive

 
ensues
 

working

 

galvanic

 

engineers

 

uncovered

 

angles

 

attention