FREE BOOKS

Author's List




PREV.   NEXT  
|<   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171  
172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   >>   >|  
d of carbon, hydrogen, and oxygen (without nitrogen), are resolved by the addition of oxygen into carbon dioxid (CO_{2}) and water (H_{2}O). The carbon dioxid unites with the lime in the blood to form carbonate of lime, and in this state passes into the urine. Now, carbonate of lime is soluble in water containing free or uncombined carbon dioxid, but is precipitated whenever the latter is withdrawn. It is only necessary, therefore, to have in the urine sufficient lime or other available base to unite with all the free carbon dioxid in order to bring about the precipitation of the dissolved carbonate of lime in the solid, crystallized form; hence it is that, of all sediments in the urine of herbivora, this is the most frequent and usually the most abundant. A less common constituent of urinary calculi is the insoluble oxalate of lime. In this case the lime is derived as before from the feed or water, or both, while the oxalic acid is a product of the oxidation of organic acids of the feed, less oxygen having been used than in the formation of carbon dioxid. The final product of the complete oxidation of these acids is carbon dioxid, but when less oxygen is furnished, owing to some disease of the lungs or a disease of the nerve centers, which lessens the activity of the breathing, then oxalic acid may be produced. If this oxalic acid comes into contact with lime, it is instantly precipitated as crystals of oxalate of lime. Another inorganic substance at times found in urinary calculi is silica (SiO_{2}). This contributes largely to giving stiffness to the stems of growing plants, and in most of our cereals and grasses makes up a large proportion of the ashes of the burned plant. It is found in the soluble form in combination as silicate of potash, but at times is displaced by oxalic or other acid and then appears as gritty, sandy particles in the stem. This gritty, insoluble silica is especially noticeable among the horsetails (_Equisetacaeceae_), bamboos, and sedges. The per cent of silica in the ash of several common fodder plants is given below: _Silica in ash of various fodder plants._ Ash of-- Silica. _Per cent._ Wheat straw 67.6 Oats and husk 38.6 Oat straw 35.4 Barley straw 73.1 Rye straw 64.4 Rye-grass hay 64.57 Wheat chaff 81.2 Oat chaff 59.9 Barley awn 70.7 It is only so
PREV.   NEXT  
|<   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171  
172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   >>   >|  



Top keywords:

carbon

 
dioxid
 

oxalic

 

oxygen

 

carbonate

 

silica

 
plants
 
common
 

Silica

 

urinary


insoluble

 

oxidation

 

product

 

gritty

 

calculi

 
oxalate
 

disease

 
fodder
 

precipitated

 

Barley


soluble

 

proportion

 

burned

 
combination
 

silicate

 

inorganic

 

substance

 

grasses

 
contributes
 

growing


stiffness

 

giving

 
cereals
 

largely

 

displaced

 

sedges

 
bamboos
 
Another
 

Equisetacaeceae

 

horsetails


appears
 

particles

 

noticeable

 

potash

 

formation

 

sufficient

 

sediments

 
herbivora
 

crystallized

 
precipitation