FREE BOOKS

Author's List




PREV.   NEXT  
|<   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   496   497   498   499   500   501   502   503  
504   505   506   507   508   509   510   511   512   513   514   515   516   517   518   519   520   521   522   523   524   525   526   527   528   >>   >|  
e, and many besides. Finally, Professor Hussey's revision of the Pulkowa Catalogue[1604] is a work of the _teres atque rotundus_ kind, which leaves little or nothing to be desired. The methods employed in double-star determinations remain, at the beginning of the twentieth century, essentially unchanged. The camera has scarcely encroached upon this part of the micrometer's domain.[1605] A research of striking merit into the origin of binary stars was published in 1892 by Dr. T. J. J. See, in the form of an Inaugural Dissertation for his doctor's degree in the University of Berlin. The main result was to show the powerful effects of tidal friction in prescribing the course of their development from double nebulae, revolving almost in contact, to double suns, far apart, yet inseparable. The high eccentricities of their eventual orbits were shown to result necessarily from this mode of action, which must operate with enormous strength on closely conjoined, nearly equal masses, such as the rapidly revolving pairs disclosed by the spectroscope. That these are still in an early stage of their life-history is probable in itself, and is re-affirmed by the exceedingly small density indicated for eclipsing stars by the ratio of phase-duration to period. Stellar photometry, initiated by the elder Herschel, and provided with exact methods by his son at the Cape, by Steinheil and Seidel at Munich, has of late years assumed the importance of a separate department of astronomical research. Two monumental works on the subject, compiled on opposite sides of the Atlantic, were thus appropriately coupled in the bestowal of the Royal Astronomical Society's Gold Medal in 1886. Harvard College Observatory led the way under the able direction of Professor E. C. Pickering. His photometric catalogue of 4,260 stars,[1606] constructed from nearly 95,000 observations of light-intensity during the years 1879-82, constitutes a record of incalculable value for the detection and estimation of stellar variability. It was succeeded in 1885 by Professor Pritchard's "Uranometria Nova Oxoniensis," including photometric determinations of the magnitude of all naked-eye stars, from the pole to ten degrees south of the equator to the number of 2,784. The instrument employed was the "wedge photometer," which measures brightness by resistance to extinction. A wedge of neutral-tint glass, accurately divided to scale, is placed in the path of the stellar rays,
PREV.   NEXT  
|<   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   496   497   498   499   500   501   502   503  
504   505   506   507   508   509   510   511   512   513   514   515   516   517   518   519   520   521   522   523   524   525   526   527   528   >>   >|  



Top keywords:

double

 

Professor

 

stellar

 

determinations

 

photometric

 

revolving

 
result
 
research
 

methods

 

employed


appropriately

 
coupled
 

Astronomical

 

bestowal

 
opposite
 

Atlantic

 

Society

 
direction
 

accurately

 

Observatory


Harvard

 

College

 

divided

 
provided
 

Steinheil

 
Herschel
 

period

 

duration

 

Stellar

 

photometry


initiated

 

Seidel

 

Munich

 

astronomical

 

monumental

 

subject

 

department

 

separate

 

assumed

 

importance


compiled
 

number

 

succeeded

 

variability

 

incalculable

 

instrument

 

detection

 

estimation

 

Pritchard

 

Uranometria