FREE BOOKS

Author's List




PREV.   NEXT  
|<   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29  
30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   >>  
teor displays of Earth. (And there is still a standing argument among the men of the Belt as to whether that sort of action can be called "weathering".) Most of the collisions tend to cause fracturing of the surface, which results in jagged edges. A man in a vacuum suit does not push himself against a surface like that with any great velocity. * * * * * St. Simon knew to a nicety that he could propel himself against a bed of nails and broken glass at just the right velocity to be able to stop himself without so much as scratching his glove. And he could see that there was no ragged stuff on the spot he had selected. The slanting rays of the sun would have made them stand out in relief. Now he was clinging to the surface of the mountain of rock like a bug on the side of a cliff. On a nickel-iron asteroid, he could have walked around on the surface, using the magnetic soles of his vacuum suit. But silicate rock is notably lacking in response to that attractive force. No soul, maybe. But directly and indirectly, that lack of response to magnetic forces was the reason for St. Simon's crawling around on the surface of that asteroid. Directly, because there was no other way he could move about on a nonmetallic asteroid. Indirectly, because there was no way the big space tugs could get a grip on such an asteroid, either. The nickel-iron brutes were a dead cinch to haul off to the smelters. All a space tug had to do was latch on to one of them with a magnetic grapple and start hauling. There was no such simple answer for the silicate rocks. The nickel-iron asteroids were necessary. They supplied the building material and the major export of the Belt cities. They averaged around eighty to ninety per cent iron, anywhere from five to twenty per cent nickel, and perhaps half a per cent cobalt, with smatterings of phosphorous, sulfur, carbon, copper, and chromium. Necessary--but not sufficient. The silicate rocks ran only about twenty-five per cent iron--in the form of nonmagnetic compounds. They averaged eighteen per cent silicon, fourteen per cent magnesium, between one and one point five per cent each of aluminum, nickel, and calcium, and good-sized dollops of sodium, chromium, phosphorous, manganese, cobalt, potassium, and titanium. But more important than these, as far as the immediate needs of the Belt cities were concerned, was a big, whopping thirty-six per cent oxygen. In the
PREV.   NEXT  
|<   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29  
30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   >>  



Top keywords:

surface

 

nickel

 
asteroid
 

silicate

 

magnetic

 

twenty

 

chromium

 

cobalt

 

averaged

 

response


cities
 
phosphorous
 
vacuum
 

velocity

 

hauling

 

grapple

 
titanium
 

answer

 

potassium

 

important


simple
 

concerned

 

whopping

 

brutes

 

thirty

 

oxygen

 

smelters

 

asteroids

 

supplied

 

sulfur


carbon
 

smatterings

 

magnesium

 

fourteen

 

copper

 

silicon

 

nonmagnetic

 

eighteen

 

Necessary

 

sufficient


export
 

dollops

 

material

 

building

 

manganese

 
sodium
 

compounds

 

aluminum

 

ninety

 

calcium