FREE BOOKS

Author's List




PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   >>   >|  
the two bodies have repelled each other. An American student of the problem, Mr. T.J.J. See, has shown that the same action has served to give to the double stars the exceeding eccentricity of their orbits. Although these recent studies of tidal action in the celestial sphere are of the utmost importance to the theory of the universe, for they may lead to changes in the nebular hypotheses, they are as yet too incomplete and are, moreover, too mathematical to be presented in an elementary treatise such as this. * * * * * We now turn to another class of waves which are of even more importance than those of the tides--to the undulations which are produced by the action of the wind on the surface of the water. While the tide waves are limited to the open ocean, and to the seas and bays which afford them free entrance, wind waves are produced everywhere where water is subjected to the friction of air which flows over it. While tidal waves come upon the shores but twice each day, the wind waves of ordinary size which roll in from the ocean deliver their blows at intervals of from three to ten seconds. Although the tidal waves sometimes, by a packing-up process, attain the height of fifty feet, their average altitude where they come in contact with the shore probably does not much exceed four feet; usually they come in gently. It is likely that in a general way the ocean surges which beat against the coast are of greater altitude. Wind waves are produced and perform their work in a manner which we shall now describe. When the air blows over any resisting surface, it tends, in a way which we can hardly afford here to describe, to produce motions. If the particle is free to move under the impulse which it communicates, it bears it along; if it is linked together in the manner of large masses, which the wind can not transport, it tends to set it in motion in an alternating way. The sounds of our musical instruments which act by wind are due to these alternating vibrations, such as all air currents tend to produce. An AEolian harp illustrates the action which we are considering. Moving over matter which has the qualities that we denote by the term fluid, the swayings which the air produces are of a peculiar sort, though they much resemble those of the fiddle string. The surface of the liquid rises and falls in what we term waves, the size of which is determined by the measure of f
PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   >>   >|  



Top keywords:
action
 
produced
 
surface
 

alternating

 

altitude

 

manner

 

describe

 
produce
 

afford

 
importance

Although

 

string

 

perform

 

swayings

 
liquid
 

fiddle

 

resemble

 

peculiar

 

produces

 

exceed


determined

 

measure

 

gently

 

resisting

 
surges
 
general
 
greater
 

denote

 
linked
 

currents


masses

 
transport
 
instruments
 

sounds

 
musical
 

vibrations

 

motion

 

motions

 

Moving

 

matter


qualities

 

particle

 

impulse

 
communicates
 

AEolian

 
illustrates
 

universe

 

theory

 

celestial

 

sphere