FREE BOOKS

Author's List




PREV.   NEXT  
|<   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69  
70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   >>   >|  
d to try to make it act in an opposite direction, that is to say, to produce a current or an electric light by means of mechanical work." A little more than two years later these experiments were carried out on a larger motor constructed by Kravogl in 1869, and Mr. Pfaundler was enabled to write as follows: "Upon running the machine by hand we obtain a current whose energy is that of one Bunsen element." This letter is dated February 11, 1870, that is to say, it is a year anterior to the note of Gramme. [Illustration: FIG. 1.] In the presence of the historic interest that attaches to the question, we do not think it will be out of place to reproduce here the considerations that guided Prof. Pfaundler in the researches that led him to convert the Kravogl motor into a dynamo-electric machine. Let us consider two magnetized bars, _db_ and _bd'_, placed end to end and surrounded by a cylindrical armature forming a shell, this armature being likewise supposed to be a permanent magnet and to present poles of contrary direction opposite the poles of the bars. For the sake of greater simplicity this shell is represented by a part only in the figure, _s n n s_. If, into a magnetic field thus formed, we pass a spiral from left to right, the spiral will be traversed by a current whose direction will change according to the way in which the moving is done. It is only necessary to apply Lenz's law to see that a reversal of the currents will occur at the points, _a_ and _c_, the direction of the current being represented by arrows in the figure. If we suppose a continual displacement of the spirals from left to right, we shall collect a continuous current by placing two rubbers at _a_ and _c_. Either the core or the shell may be replaced by a piece of soft iron. In such a case this piece will move with the spiral and keep its poles that are developed by induction fixed in space. From this, in order to reach a dynamo-electric machine it is necessary to try to develop the energy of the magnetic field by the action of the current itself. If we suppose the core to be of soft iron, and make a closer study of the action of the current as regards the polarity that occurs under the influence of the poles, _s_, _n_, _s_, we shall see that from _d_ to _a_ and from _b_ to _c_ the current is contrary, while that from _a_ to _b_ and from _c_ to _d'_ it is favorable to the development of such polarity. In short, with a spiral moving from _d_
PREV.   NEXT  
|<   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69  
70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   >>   >|  



Top keywords:

current

 

spiral

 

direction

 

electric

 

machine

 

energy

 

suppose

 

armature

 

magnetic

 

figure


contrary
 

represented

 

moving

 
dynamo
 

polarity

 

action

 

Pfaundler

 

opposite

 
Kravogl
 

closer


change

 

develop

 
traversed
 

favorable

 

development

 
influence
 

formed

 

occurs

 

placing

 

rubbers


continuous
 

collect

 
spirals
 
developed
 

Either

 

simplicity

 

replaced

 

displacement

 

continual

 

reversal


arrows
 

induction

 

points

 

currents

 
magnetized
 

running

 

obtain

 

enabled

 

Bunsen

 
February