FREE BOOKS

Author's List




PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   >>   >|  
ropyle, but passing down the ovary wall and through the placenta, enters at the chalazal end of the ovule. Such a method of entrance is styled chalazogamic, in contrast to the porogamic or ordinary method of approach by means of the micropyle. _Embryology._ The result of fertilization is the development of the ovule into the seed. By the segmentation of the fertilized egg, now invested by cell-membrane, the embryo-plant arises. A varying number of transverse segment-walls transform it into a pro-embryo--a cellular row of which the cell nearest the micropyle becomes attached to the apex of the embryo-sac, and thus fixes the position of the developing embryo, while the terminal cell is projected into its cavity. In Dicotyledons the shoot of the embryo is wholly derived from the terminal cell of the pro-embryo, from the next cell the root arises, and the remaining ones form the suspensor. In many Monocotyledons the terminal cell forms the cotyledonary portion alone of the shoot of the embryo, its axial part and the root being derived from the adjacent cell; the cotyledon is thus a terminal structure and the apex of the primary stem a lateral one--a condition in marked contrast with that of the Dicotyledons. In some Monocotyledons, however, the cotyledon is not really terminal. The primary root of the embryo in all Angiosperms points towards the micropyle. The developing embryo at the end of the suspensor grows out to a varying extent into the forming endosperm, from which by surface absorption it derives good material for growth; at the same time the suspensor plays a direct part as a carrier of nutrition, and may even develop, where perhaps no endosperm is formed, special absorptive "suspensor roots" which invest the developing embryo, or pass out into the body and coats of the ovule, or even into the placenta. In some cases the embryo or the embryo-sac sends out suckers into the nucellus and ovular integument. As the embryo develops it may absorb all the food material available, and store, either in its cotyledons or in its hypocotyl, what is not immediately required for growth, as reserve-food for use in germination, and by so doing it increases in size until it may fill entirely the embryo-sac; or its absorptive power at this stage may be limited to what is necessary for growth and it remains of relatively small size, occupying but a small area of the embryo-sac, which is otherwise filled with endosperm in which
PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   >>   >|  



Top keywords:
embryo
 

terminal

 

suspensor

 

micropyle

 

developing

 

endosperm

 
growth
 

arises

 

varying

 
absorptive

derived

 

Dicotyledons

 

Monocotyledons

 

material

 
method
 

cotyledon

 

contrast

 
primary
 

placenta

 

derives


surface

 

forming

 
absorption
 

develop

 

direct

 

nutrition

 
special
 

formed

 
carrier
 
suckers

increases

 

reserve

 

germination

 

limited

 

occupying

 

required

 

immediately

 

remains

 

nucellus

 
ovular

integument
 

extent

 

filled

 

cotyledons

 
hypocotyl
 

develops

 

absorb

 
invest
 

segmentation

 

fertilized