FREE BOOKS

Author's List




PREV.   NEXT  
|<   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221  
222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   >>   >|  
s all the difference between "poison" and "meati." If the phagocytes and similar cells in the blood of a man or animal exposed to the poison produced by localised microbes (such as those of tetanus, diphtheria and septic growths) cannot produce enough antitoxin so as to quickly destroy the poison, we can, and do, nowadays, save his life, by injecting into his blood the required antitoxin, obtained from another animal which we have caused (by injection of the toxin) to produce the antitoxin in excess. That is one sort of "immunity" or "resistance" which we can confer, and is largely in use at the present day--the "antitoxin" treatment. The second poison-repelling chemical activity of the blood, produced by the living cells in and about it, consists in the blood becoming directly poisonous to injurious microbes. It becomes "bactericidal," produces a bactericidal poison (called an alexin) which is usually present in normal blood, but is greatly increased when large numbers of certain poisonous microbes (_e.g._ those of typhoid fever) get into the blood. Again, by other chemical substances produced in it, the blood may, without actually killing the invading bacteria, only paralyse them, and cause them to "agglutinate" (that is, to adhere to one another as an inactive "clot" or "lump"). As the "agglutinating" poison is peculiar (or nearly so) for each kind of microbe, we can tell whether a patient has typhoid by drawing a drop of his blood into a tube, and adding some fresh living typhoid bacilli to it. If the patient had typhoid he will have begun to form the "typhoid-agglutinating" or "typhoid-paralysing" poison in his blood, and the experiment will result in the "agglutination" (sticking together in a lump) of the typhoid bacilli. And so we prove, in a doubtful case, that the patient has typhoid. The third chemical activity of the blood in dealing with poisonous microbes is also one which is conferred upon it by its living cells when excited by the presence of those microbes. It is the production of a "relish" (for so it must be called) which attaches itself to the microbes and renders them attractive to the eater-cells (the phagocytes), so that those swarming amoeba-like floating particles at once proceed to engulf the microbes with avidity. In the absence of the relish (the Greek word for it used by Sir Almroth Wright, its discoverer, is "opsonin"), the eater-cells are sluggish--too sluggish--in their work. They
PREV.   NEXT  
|<   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221  
222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   >>   >|  



Top keywords:
typhoid
 

poison

 

microbes

 
antitoxin
 
poisonous
 
living
 

patient

 

chemical

 

produced

 

relish


bactericidal
 
bacilli
 

animal

 

present

 

called

 

phagocytes

 

activity

 

sluggish

 

produce

 

agglutinating


experiment
 

paralysing

 

result

 
peculiar
 

sticking

 
agglutination
 
drawing
 

adding

 

microbe

 

Wright


particles

 

floating

 
discoverer
 
swarming
 

amoeba

 
proceed
 

Almroth

 

absence

 

engulf

 

avidity


attractive

 

renders

 
opsonin
 

dealing

 
doubtful
 
conferred
 

attaches

 

production

 
excited
 

presence