FREE BOOKS

Author's List




PREV.   NEXT  
|<   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114  
115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   >>   >|  
iven in this book are to be considered only as approximations to exact truth. All were made with a view, not to some remote future, but to an arrival within the compass of a few years at some result in actual flight that could not be gainsaid or mistaken.' With a series of over thirty rubber-driven models Langley demonstrated the practicability of opposing curved surfaces to the resistance of the air in such a way as to achieve flight, in the early nineties of last century; he then set about finding the motive power which should permit of the construction of larger machines, up to man-carrying size. The internal combustion engine was then an unknown quantity, and he had to turn to steam, finally, as the propulsive energy for his power plant. The chief problem which faced him was that of the relative weight and power of his engine; he harked back to the Stringfellow engine of 1868, which in 1889 came into the possession of the Smithsonian Institution as a historical curiosity. Rightly or wrongly Langley concluded on examination that this engine never had developed and never could develop more than a tenth of the power attributed to it; consequently he abandoned the idea of copying the Stringfellow design and set about making his own engine. How he overcame the various difficulties that faced him and constructed a steam-engine capable of the task allotted to it forms a story in itself, too long for recital here. His first power-driven aerodrome of model size was begun in November of 1891, the scale of construction being decided with the idea that it should be large enough to carry an automatic steering apparatus which would render the machine capable of maintaining a long and steady flight. The actual weight of the first model far exceeded the theoretical estimate, and Langley found that a constant increase of weight under the exigencies of construction was a feature which could never be altogether eliminated. The machine was made principally of steel, the sustaining surfaces being composed of silk stretched from a steel tube with wooden attachments. The first engines were the oscillating type, but were found deficient in power. This led to the construction of single-acting inverted oscillating engines with high and low pressure cylinders, and with admission and exhaust ports to avoid the complication and weight of eccentric and valves. Boiler and furnace had to be specially designed; an analysis of sustaining surfaces
PREV.   NEXT  
|<   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114  
115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   >>   >|  



Top keywords:

engine

 
construction
 

weight

 

surfaces

 

flight

 

Langley

 
sustaining
 
Stringfellow
 

capable

 
machine

actual

 

oscillating

 

engines

 

driven

 

eccentric

 

November

 

valves

 

aerodrome

 
complication
 

making


analysis

 

decided

 

Boiler

 

specially

 
allotted
 

designed

 
constructed
 

difficulties

 

recital

 
furnace

overcame

 

apparatus

 

exigencies

 

design

 

deficient

 

constant

 
increase
 

feature

 

altogether

 

stretched


attachments

 

eliminated

 

principally

 

composed

 
single
 
render
 

cylinders

 

pressure

 
admission
 

steering