FREE BOOKS

Author's List




PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  
ature of which may be imagined when it is stated that he published thirty-three separate works, besides leaving behind twenty-two volumes of manuscript. During his researches on the motions of Mars, Kepler discovered that the planet sometimes travelled at an accelerated rate of speed, and at another time its pace was diminished. At one time he observed it to be in advance of the place where he calculated it should be found, and at another time it was behind it. This caused him considerable perplexity, and, feeling convinced in his mind that the form of the planet's orbit could not be circular, he was compelled to turn his attention to some other closed curve, by which those inequalities of motion could be explained. After years of careful observation and study, Kepler arrived at the conclusion that the form of the planet's orbit is an ellipse, and that the Sun occupies one of the foci. He afterwards determined that the orbits of all the planets are of an elliptical form. Having discovered the true form of the planetary orbits, Kepler next endeavoured to ascertain the cause which regulates the unequal motion that a planet pursues in its path. He observed that when a planet approached the Sun its motion was accelerated, and as it receded from him its pace became slower. This he explained in his next great discovery by proving that an imaginary line, or radius-vector, extending from the centre of the Sun to the centre of the planet 'describes equal areas in equal times.' When near the Sun, or at perihelion, a planet traverses a larger portion of its arc in the same period of time than it does when at the opposite part of its orbit, or when at aphelion; but, as the areas of both are equal, it follows that the planet does not always maintain the same rate of speed, and that its velocity is greatest when nearest the Sun, and least when most distant from him. By the application of his first and second laws Kepler was able to formulate a third law. He found that there existed a remarkable relationship between the mean distances of the planets and the times in which they complete their revolutions round the Sun, and discovered 'that the squares of the periodic times are to each in the same proportion as the cubes of the mean distances.' The periodic time of a planet having been ascertained, the square of the mean distance and the mean distance itself can be obtained. It is by the application of this law that the dista
PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  



Top keywords:
planet
 

Kepler

 

discovered

 

motion

 

planets

 

centre

 
orbits
 

observed

 

application

 
explained

accelerated

 

periodic

 

distance

 

distances

 
portion
 

larger

 

imaginary

 
proportion
 

period

 

traverses


obtained

 

extending

 
vector
 

radius

 

describes

 

ascertained

 
square
 

opposite

 
perihelion
 
complete

formulate

 

relationship

 

remarkable

 

existed

 

proving

 

revolutions

 

squares

 

maintain

 

aphelion

 
velocity

distant
 

greatest

 

nearest

 

determined

 
advance
 

diminished

 

travelled

 
calculated
 

convinced

 

circular