FREE BOOKS

Author's List




PREV.   NEXT  
|<   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192  
193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   >>   >|  
nd imperceptibly toning down into the gray tint of the clouds. The slightest details were clearly discernible--net, robes, and instruments. Every one of our gestures was instantaneously reproduced by the aerial spectres. The anthelion remained upon the clouds sufficiently distinct, and for a sufficiently long time, to permit of my taking a sketch in my journal and studying the physical condition of the clouds upon which it was produced. I was able to determine directly the circumstances of its production. Indeed, as this brilliant phenomenon occurred in the midst of the very clouds which I was traversing, it was easy for me to ascertain that these clouds were not formed of frozen particles. The thermometer marked 2 deg. above zero. The hygrometer marked a maximum of humidity experienced, namely, seventy-seven at three thousand seven hundred and seventy feet, and the balloon was then at four thousand six hundred feet, where the humidity was only seventy-three. It is therefore certain that this is a phenomenon of the diffraction of light simply produced by the vesicles of the mist. The name of diffraction is given to all the modifications which the luminous rays undergo when they come in contact with the surface of bodies. Light, under these circumstances, is subject to a sort of deviation, at the same time becoming decomposed, whence result those curious appearances in the shadows of objects which were observed for the first time by Grimaldi and Newton. The most interesting phenomena of diffraction are those presented by _gratings_, as are technically denominated the systems of linear and very narrow openings situated parallel to one another and at very small intervals. A system of this kind may be realized by tracing with a diamond, for instance, on a pane of glass equidistant lines very close together. As the light would be able to pass in the interstices between the strokes, whereas it would be stopped in the points corresponding to those where the glass was not smooth, there is, in reality, an effect produced as if there were a series of openings very near to each other. A hundred strokes, about 1/25th of an inch in length, may thus be drawn without difficulty. The light is then decomposed in spectra, each overlapping the other. It is a phenomenon of this kind which is seen when we look into the light with the eye half closed; the eyelashes in this case, acting as a net-work or grating. These net-works may also b
PREV.   NEXT  
|<   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192  
193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   >>   >|  



Top keywords:

clouds

 

seventy

 

produced

 

phenomenon

 
hundred
 
diffraction
 

strokes

 

decomposed

 

marked

 

thousand


circumstances

 
openings
 

humidity

 

sufficiently

 
situated
 

parallel

 
intervals
 
system
 
spectra
 

realized


overlapping

 

linear

 
Grimaldi
 

Newton

 

interesting

 
eyelashes
 

objects

 

observed

 
phenomena
 
closed

systems
 

difficulty

 
denominated
 
presented
 

gratings

 

technically

 

narrow

 

stopped

 
points
 

interstices


acting

 
shadows
 

reality

 

effect

 

smooth

 

grating

 

length

 

series

 

instance

 

diamond