FREE BOOKS

Author's List




PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   >>   >|  
he rate is greater--and, second, those coming from harmless growths in the under-drains and lower parts of the filter--the numbers of which per cubic centimeter are presumably less as the rate is greater--and these two parts, varying in opposite directions, may balance each other, as they seem to do in this case, through a considerable range. It may thus be that the number of bacteria really passing the filter varies much more with the rate than is indicated by the gross results. It is also of interest to note that the sand filter (called a preliminary filter) in Table 18, filled with the same kind of sand, when operated at an average rate of 50,000,000 gal. per acre daily for a year, allowed 18% of the applied bacteria to pass, in comparison with 3% found in Filter No. 6 of Table 20, operated at an average rate of 38,000,000 gal. per acre daily. There was one point of difference in the manipulation: the preliminary filter was washed by a reversed current of water, as mechanical filters are washed, while Filter No. 6 was cleaned by scraping off the surface layer, as is usual with sand filters. Whether the great difference in bacterial results with a relatively small difference in rate is to be attributed to this difference in manipulation the writer will not undertake to state. If the experimental results of Table 20 indicate correctly the conditions which obtain in filtering Potomac water, then increasing the rate of filtration so as to double it, or more than double it, would make but little difference in the quality of the effluent as measured by the usual bacterial methods. If the increase in rate were accompanied by the preliminary filtration of the water, then, presumably, there would be little change in the quality of the effluent, and the maintenance of excellent results might be incorrectly attributed to the influence of the preliminary filter. It would also seem that the apparatus which is sometimes used for determining and controlling the rate with more than the ordinary degree of precision is hardly justified by such experimental results as those presented by the author. In contrast to these results may be mentioned those obtained by Mr. H. W. Clark,[1] for experimental filters operated with Merrimac River water, at rates ranging from 3,000,000 to 16,000,000 gal. per acre daily. The results are the average of nearly two years of experimental work, the period having been nearly coincident with tha
PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   >>   >|  



Top keywords:
results
 

filter

 

difference

 
preliminary
 

experimental

 

filters

 

average

 

operated

 

manipulation

 

bacteria


effluent

 
quality
 

bacterial

 
greater
 
attributed
 

washed

 

Filter

 

double

 

filtration

 

accompanied


increase

 

obtain

 

filtering

 

conditions

 

correctly

 
Potomac
 

increasing

 

measured

 

methods

 

controlling


Merrimac

 

obtained

 
ranging
 

coincident

 

period

 

mentioned

 

contrast

 

apparatus

 

influence

 

incorrectly


maintenance
 
excellent
 

determining

 

ordinary

 

presented

 
author
 

justified

 
degree
 
precision
 

change