FREE BOOKS

Author's List




PREV.   NEXT  
|<   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105  
106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   >>   >|  
r of a mile from each other. Telephonic communication was established between them, and thus he had attained wireless telephony by induction. In 1887, another Englishman, A.W. Heaviside, laid circuits over two miles long on the surface and other circuits in the galleries of a coal-mine three hundred and fifty feet below, and established communication between the circuits. Working together, Preece and Heaviside extended the distances over which they could communicate. Preece finally decided that a combination of conduction and induction was the best means of wireless communication. He grounded the wire of his circuit at two points and raised it to a considerable height between these points. Preece's work was to put the theories of Professor Trowbridge to practical use and thus bring the final achievement a step nearer. But conduction and induction combined would not carry messages to a distance that would enable extensive communication. A new medium had yet to be found, and this was the work of Heinrich Hertz, a young German scientist. He was experimenting with two flat coils of wire, as had many others before him, but one of the coils had a small gap in it. Passing the discharge from a condenser into this coil, Hertz discovered that the spark caused when the current jumped the gap set up electrical vibrations that excited powerful currents in the other coil. These currents were noticeable, though the coils were a very considerable distance apart. Thus Hertz had found out how to send out electrical waves that would travel to a considerable distance. What was the medium that carried these waves? This was the question that Hertz asked himself, and the answer was, the ether. We know that light will pass through a vacuum, and these electric waves would do likewise. It was evident that they did not pass through the air. The answer, as evolved by Hertz and approved by other scientists, is that they travel through the ether, a strange substance which pervades all space. Hertz discovered that light and his electrical waves traveled at the same speed, and so deduced that light consists of electrical vibrations in the ether. With the knowledge that this all-pervading ether would carry electric waves at the speed of light, that the waves could be set up by the discharge of a spark across a spark-gap in a coil, and that they could be received in another coil in resonance with the first, the establishment of a practical wireles
PREV.   NEXT  
|<   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105  
106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   >>   >|  



Top keywords:

electrical

 

communication

 

distance

 

Preece

 

considerable

 

induction

 
circuits
 

practical

 

travel

 
wireless

points

 

discovered

 

vibrations

 

discharge

 
currents
 

medium

 
established
 

answer

 

Heaviside

 

electric


conduction
 

powerful

 

noticeable

 

excited

 

evolved

 
approved
 

scientists

 

resonance

 

pervades

 

establishment


caused

 

wireles

 

traveled

 

current

 

substance

 
jumped
 

strange

 
pervading
 

likewise

 

knowledge


deduced

 
consists
 

vacuum

 

question

 

evident

 

received

 
carried
 

Working

 
hundred
 
extended