FREE BOOKS

Author's List




PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  
ty of the surfaces of liquids, but to the fatty part of the soap which he supposed to separate itself from the other constituents of the solution, and to form a thin skin on the outer face of the bubble. In 1787 Gaspard Monge (_Memoires de l'Acad. des Sciences_, 1787, p. 506) asserted that "by supposing the adherence of the particles of a fluid to have a sensible effect only at the surface itself and in the direction of the surface it would be easy to determine the curvature of the surfaces of fluids in the neighbourhood of the solid boundaries which contain them; that these surfaces would be _linteariae_ of which the tension, constant in all directions, would be everywhere equal to the adherence of two particles, and the phenomena of capillary tubes would then present nothing which could not be determined by analysis." He applied this principle of surface-tension to the explanation of the apparent attractions and repulsions between bodies floating on a liquid. In 1802 John Leslie (_Phil. Mag._, 1802, vol. xiv. p. 193) gave the first correct explanation of the rise of a liquid in a tube by considering the effect of the attraction of the solid on the very thin stratum of the liquid in contact with it. He did not, like the earlier speculators, suppose this attraction to act in an upward direction so as to support the fluid directly. He showed that the attraction is everywhere normal to the surface of the solid. The direct effect of the attraction is to increase the pressure of the stratum of the fluid in contact with the solid, so as to make it greater than the pressure in the interior of the fluid. The result of this pressure if unopposed is to cause this stratum to spread itself over the surface of the solid as a drop of water is observed to do when placed on a clean horizontal glass plate, and this even when gravity opposes the action, as when the drop is placed on the under surface of the plate. Hence a glass tube plunged into water would become wet all over were it not that the ascending liquid film carries up a quantity of other liquid which coheres to it, so that when it has ascended to a certain height the weight of the column balances the force by which the film spreads itself over the glass. This explanation of the action of the solid is equivalent to that by which Gauss afterwards supplied the defect of the theory of Laplace, except that, not being expressed in terms of mathematical symbols, it does not indi
PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  



Top keywords:

surface

 

liquid

 
attraction
 

explanation

 

pressure

 
surfaces
 

effect

 

stratum

 

contact

 
direction

adherence

 
particles
 

action

 

tension

 

observed

 
spread
 

suppose

 

result

 

showed

 

normal


directly
 

support

 
upward
 

direct

 

increase

 

interior

 

greater

 
unopposed
 

supplied

 

defect


equivalent
 
balances
 

spreads

 
theory
 

Laplace

 

symbols

 

mathematical

 

expressed

 
column
 
weight

plunged

 

speculators

 

gravity

 

opposes

 
ascending
 

ascended

 

height

 

coheres

 
carries
 

quantity