FREE BOOKS

Author's List




PREV.   NEXT  
|<   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213  
214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   >>   >|  
etching for thousands of miles over different parts of Europe, has become visible to us by the effect, not of one, but of many distinct series of subterranean movements. Time has been required, and a succession of geological periods, to raise it above the waves in so many regions; and if calcareous rocks of the middle and upper tertiary periods have been formed, as homogeneous in mineral composition throughout equally extensive regions, it may require convulsions as numerous as all those which have occurred since the origin of the Chalk to bring them up within the sphere of human observation. Hence the rocks of more modern periods may appear partial, as compared to those of remoter eras, not because of any original inferiority in their extent, but because there has not been sufficient time since their origin for the development of a great series of elevatory movements. In regard, however, to one of the most important characteristics of sedimentary rocks, their organic remains, many naturalists of high authority have maintained that the same species of fossils are more uniformly distributed through formations of high antiquity than in those of more modern date, and that distinct zoological and botanical provinces, as they are called, which form so striking a feature in the living creation, were not established at remote eras. Thus the plants of the Coal, the shells, the trilobites of the Silurian rocks, and the ammonites of the Oolite, have been supposed to have a wider geographical range than any living species of plants, crustaceans, or mollusks. This opinion seems in certain cases to be well founded, especially in relation to the plants of the Carboniferous epoch, owing probably to the more uniform temperature of the globe, at a time when the position of sea and land was less favorable to variations in climate, according to principles already explained in the seventh and eighth chapters. But a recent comparison of the fossils of North American rocks with those of corresponding ages in the European series, has proved that the terrestrial vegetation of the Carboniferous epoch is an exception to the general rule, and that the fauna and flora of the earth at successive periods, from the oldest Silurian to the newest Tertiary was as diversified as now. The shells, corals, and other classes of organic remains demonstrate the fact that the earth might then have been divided into separate zoological provinces, in a manner an
PREV.   NEXT  
|<   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213  
214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   >>   >|  



Top keywords:

periods

 

series

 
plants
 

modern

 

origin

 
zoological
 

provinces

 
living
 
fossils
 

shells


Silurian
 

Carboniferous

 

organic

 

remains

 

species

 

regions

 

movements

 

distinct

 

uniform

 
temperature

position
 

variations

 

climate

 
principles
 
favorable
 

thousands

 

crustaceans

 
mollusks
 

geographical

 

ammonites


Oolite
 

supposed

 

opinion

 
founded
 

relation

 

eighth

 

Tertiary

 

diversified

 

newest

 
oldest

etching

 
successive
 

corals

 
divided
 
separate
 

manner

 
classes
 

demonstrate

 

comparison

 
American