FREE BOOKS

Author's List




PREV.   NEXT  
|<   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289  
290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   >>   >|  
ceedingly thin slices, such as made for microscopic investigation, which are imperfectly transparent, and of a dark brown colour by transmitted light. The streak is black in anthracite, but more or less brown in the softer varieties. The maximum hardness is from 2.5 to 3 in anthracite and hard bituminous coals, but considerably less in lignites, which are nearly as soft as rotten wood. A greater hardness is due to the presence of earthy impurities. The densest anthracite is often of a semi-metallic lustre, resembling somewhat that of graphite. Bright, glance or pitch coal is another brilliant variety, brittle, and breaking into regular fragments of a black colour and pitchy lustre. Lignite and cannel are usually dull and earthy, and of an irregular fracture, the latter being much tougher than the black coal. Some lignites are, however, quite as brilliant as anthracite; cannel and jet may be turned in the lathe, and are susceptible of taking a brilliant polish. The specific gravity is highest in anthracite and lowest in lignite, bituminous coals giving intermediate values (see TABLE I.). As a rule, the density increases with the amount of carbon, but in some instances a very high specific gravity is due to intermixed earthy matters, which are always denser than even the densest form of coal substance. Coal is never definitely crystalline, the nearest approach to such a structure being a compound fibrous grouping resembling that of gypsum or arragonite, which occurs in some of the steam coals of South Wales, and is locally known as "cone in cone," but no definite form or arrangement can be made out of the fibres. Usually it occurs in compact beds of alternating bright and dark bands in which impressions of leaves, woody fibre and other vegetable remains are commonly found. There is generally a tendency in coals towards cleaving into cubical or prismatic blocks, but sometimes the cohesion between the particles is so feeble that the mass breaks up into dust when struck. These peculiarities of structure may vary very considerably within small areas; and the position of the divisional planes or cleats with reference to the mass, and the proportion of small coal or slack to the larger fragments when the coal is broken up by cutting-tools, are points of great importance in the working of coal on a large scale. The divisional planes often contain small films of other minerals, the commonest being calcite, gypsum and iron pyri
PREV.   NEXT  
|<   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289  
290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   >>   >|  



Top keywords:

anthracite

 

brilliant

 
earthy
 

structure

 

lustre

 
resembling
 
densest
 
divisional
 

gravity

 

fragments


planes
 

specific

 

cannel

 
occurs
 
gypsum
 
hardness
 
colour
 

bituminous

 

lignites

 
considerably

alternating

 

Usually

 

fibres

 

bright

 

compact

 
vegetable
 

leaves

 

impressions

 

calcite

 

arragonite


grouping

 

compound

 
fibrous
 

definite

 

arrangement

 

minerals

 

commonest

 
locally
 

approach

 

struck


cutting

 

breaks

 

points

 

broken

 

peculiarities

 
position
 
reference
 

proportion

 

larger

 

feeble