FREE BOOKS

Author's List




PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  
ndividual, as the unit. Since we are forced into extensive use of this formula by our present and temporary ignorance of the applicability of Mendel's rule we must get a clear notion of how the statistical method is applied in this matter. The method is the same as that employed by the statistician in measuring the relatedness of any two series of varying phenomena. If two quantities or characteristics are so related that fluctuations in the one are accompanied in a regular manner by fluctuations in the other, the two quantities or characters are said to be correlated. For instance, the temperature and the rate of growth of sprouting beans are related in such a way that increase in the former is accompanied in a regular way by increase in the latter; or the width and height of the head, or the total stature and the length of the femur similarly vary regularly together so that they are said to be correlated to a certain extent which can be measured. This correlation may result from the fact that one condition is a cause, either direct or indirect, of the other; or there may be no such causal relation between the two phenomena, both resulting more or less independently from a common antecedent condition or cause. This phenomenon of correlation is not limited among organisms to the comparison of two or more different characters in a single series of individuals; it is applicable also to the comparison of two series of individuals with respect to the same characteristic. Thus we may compare the stature of a series of fathers with the same measurement in their sons. It is this form of correlation with which we are particularly to deal here. While it is not necessary to understand just how this subject is dealt with by the statistician we should know one or two of the elementary principles involved, in order to appreciate the statistical form of many statements about heredity. The stature of men may be said to vary usually between limits of 62 and 76 inches, the average height being about 69 inches. In the complete absence of heredity in stature we should find that fathers of any given height, say 62 or 63 or 76 inches would have sons of no particular height but of all heights with an average of 69 inches, the same as in the whole group. Or if stature were completely heritable from one generation to the next the _total generations being the units compared_, then 62 or 63 or 76 inch fathers would have respectively sons a
PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  



Top keywords:

stature

 

height

 
series
 

inches

 

fathers

 
correlation
 

increase

 

characters

 

heredity

 
correlated

average

 
comparison
 

individuals

 

regular

 

condition

 
statistician
 

accompanied

 

statistical

 

method

 

phenomena


related
 

quantities

 
fluctuations
 

heritable

 

completely

 

understand

 

measurement

 
generations
 

compared

 

respect


characteristic
 
generation
 

compare

 
subject
 

complete

 

applicable

 

statements

 

limits

 
heights
 
absence

principles

 

involved

 

elementary

 

result

 
employed
 

measuring

 

relatedness

 

matter

 
applied
 

notion