FREE BOOKS

Author's List




PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   >>   >|  
f the glass globe into a metallic cup, and to provide it with a tube or stop-cock for exhaustion by means of a hand-pump. Lodyguine, Konn, Kosloff, and Khotinsky, between 1872 and 1877, proposed various ingenious devices for perfecting the joint between the metal base and the glass globe, and also provided their lamps with several short carbon pencils, which were automatically brought into circuit successively as the pencils were consumed. In 1876 or 1877, Bouliguine proposed the employment of a long carbon pencil, a short section only of which was in circuit at any one time and formed the burner, the lamp being provided with a mechanism for automatically pushing other sections of the pencil into position between the contacts to renew the burner. Sawyer and Man proposed, in 1878, to make the bottom plate of glass instead of metal, and provided ingenious arrangements for charging the lamp chamber with an atmosphere of pure nitrogen gas which does not support combustion. These lamps and many others of similar character, ingenious as they were, failed to become of any commercial value, due, among other things, to the brief life of the carbon burner. Even under the best conditions it was found that the carbon members were subject to a rapid disintegration or evaporation, which experimenters assumed was due to the disrupting action of the electric current; and hence the conclusion that carbon contained in itself the elements of its own destruction, and was not a suitable material for the burner of an incandescent lamp. On the other hand, platinum, although found to be the best of all materials for the purpose, aside from its great expense, and not combining with oxygen at high temperatures as does carbon, required to be brought so near the melting-point in order to give light, that a very slight increase in the temperature resulted in its destruction. It was assumed that the difficulty lay in the material of the burner itself, and not in its environment. It was not realized up to such a comparatively recent date as 1879 that the solution of the great problem of subdivision of the electric current would not, however, be found merely in the production of a durable incandescent electric lamp--even if any of the lamps above referred to had fulfilled that requirement. The other principal features necessary to subdivide the electric current successfully were: the burning of an indefinite number of lights on the same circuit; ea
PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   >>   >|  



Top keywords:

carbon

 
burner
 

electric

 
proposed
 
circuit
 

ingenious

 

provided

 

current

 
assumed
 
pencil

automatically
 

brought

 

pencils

 

destruction

 

incandescent

 

material

 

temperatures

 

melting

 
oxygen
 
combining

required

 

contained

 

elements

 

conclusion

 

disrupting

 

action

 
suitable
 
purpose
 

materials

 
platinum

expense

 
comparatively
 

fulfilled

 
requirement
 
principal
 

referred

 
features
 

lights

 

number

 
indefinite

subdivide

 

successfully

 

burning

 

durable

 

production

 

difficulty

 
environment
 

realized

 

resulted

 

temperature