FREE BOOKS

Author's List




PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   >>  
e user years ago no longer exist. All that we require of the cooling water is that it shall keep certain working parts of the engine at a reasonable temperature; for instance, the cylinder must not be so hot as to deprive the lubricating oil of its property to lubricate, neither must the exhaust valve become so hot as to cause it to seize in the bush and stick up; but, beyond such considerations as these, the higher the temperature is at the commencement of each explosion the more efficient will the engine be. The object, then, is to do as little cooling as possible, and to apply the cooling effect at the right parts; hence the passages and chambers through which the cooling water circulates should be so arranged that those which require to be kept at a low temperature are in close proximity to the cooling water. On some of the engines of days gone by, the exhaust valve was carried in a large iron casting, this in turn being bolted to the cylinder casting and communicating with the combustion chamber by means of a port. Such an arrangement was found to be not only clumsy but inefficient; the water passages were small and difficult to get at; they readily furred up; and moreover, the joint between this casting and the cylinder was necessarily a water _and_ explosion joint, and the fewer we have of these the better. The method--if it may be called a method--of overcoming or preventing the exhaust valve becoming too hot is, in the case of figs. 11 and 12, simply one of judicious arrangement and design. The cooling water enters by the inlet K (fig. 11), and circulates round the exhaust valve port X and valve E immediately, before becoming heated, thus keeping the hottest of the working parts of the engine at a suitable temperature; and the valve seat, being in direct metallic communication with the cold water, does not become burnt or pitted. On the other side of the exhaust valve we have the air valve and its passages, through which cool air is continually being drawn; this also helps to keep the exhaust valve cool. From this, then, we may conclude that overheating of the cylinder will not occur under normal conditions, given an engine of good design; but, if this trouble does arise, we may safely look first of all for some defect in the cooling water circulation. Some waters contain a greater amount of impurities than others, and consequently the water space may furr up more rapidly in one district than in another. Bu
PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   >>  



Top keywords:
cooling
 

exhaust

 

temperature

 

engine

 

cylinder

 

passages

 
casting
 
explosion
 
method
 

arrangement


design

 

circulates

 

working

 
require
 

overcoming

 

impurities

 

district

 

amount

 

greater

 

heated


immediately

 

rapidly

 

simply

 

preventing

 
enters
 

judicious

 

hottest

 

conclude

 
safely
 

continually


overheating

 

normal

 
trouble
 

called

 
direct
 

suitable

 

waters

 

conditions

 
metallic
 

communication


defect
 
pitted
 

circulation

 

keeping

 

bolted

 

considerations

 
higher
 

commencement

 

efficient

 

effect