FREE BOOKS

Author's List




PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  
4, it should be filed a little at one end until it assumes the position indicated. The pointer or hand, Fig. 5, is made of wire, aluminum being preferable for this purpose, although copper or steel will do. Make the wire 4-1/2 in. long and make a loop, D, 1/2 in. from the lower end. Solder to the short end a piece of brass, E, of such weight that it will exactly balance the weight of the hand. This is slipped on the pivot, and the whole thing is again placed in position in the support. If the pointer is correctly balanced it should take the position shown in Fig. 1, but if it is not exactly right a little filing will bring it near enough so that it may be corrected by the adjusting-screw. Next make a brass frame as shown in Fig. 6. This may be made of wood, although brass is better, as the eddy currents set up in a conductor surrounding a magnet tend to stop oscillation of the magnet. (The core is magnetized when a current flows through the instrument.) The brass frame is wound with magnet wire, the size depending on the number of amperes to be measured. Mine is wound with two layers of No. 14 wire, 10 turns to each layer, and is about right for ordinary experimental purposes. The ends of the wire are fastened to the binding posts B and C, Fig. 1. A wooden box, D, is then made and provided with a glass front. A piece of paper is pasted on a piece of wood, which is then fastened in the box in such a position that the hand or pointer will lie close to the paper scale. The box is 5-1/2 in. high, 4 in. wide and 1-3/4 in. deep, inside measurements. After everything is assembled put a drop of solder on the loop at D, Fig. 5, to prevent it turning on the axle. To calibrate the instrument connect as shown in Fig. 7, where A is the homemade ammeter; B, a standard ammeter; C, a variable resistance, and D, a battery, consisting of three or more cells connected in multiple. Throw in enough resistance to make the standard instrument read 1 ohm [sic: ampere] and then put a mark on the paper scale of the instrument to be calibrated. Continue in this way with 2 amperes, 3 amperes, 4 amperes, etc., until the scale is full. To make a voltmeter out of this instrument, wind with plenty of No. 36 magnet wire instead of No. 14, or if it is desired to make an instrument for measuring both volts and amperes, use both windings and connect to two pairs of binding posts. --Contributed by J.E. Dussault, Montreal. ** How to Make a T
PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  



Top keywords:

instrument

 

amperes

 
position
 

magnet

 

pointer

 

resistance

 

connect

 

binding

 

fastened

 
ammeter

weight

 
standard
 
calibrate
 
turning
 
prevent
 

solder

 

pasted

 

provided

 

measurements

 

inside


assembled

 

desired

 

measuring

 

plenty

 

voltmeter

 

Montreal

 

Dussault

 

windings

 
Contributed
 

consisting


battery

 

homemade

 

variable

 

connected

 
multiple
 
calibrated
 

Continue

 
ampere
 
support
 

correctly


balanced
 
corrected
 

filing

 

slipped

 

balance

 

aluminum

 

preferable

 

assumes

 

purpose

 

copper