FREE BOOKS

Author's List




PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>  
test difference between the atomic bomb and the T.N.T. explosion is the fact that the atomic bomb gives off greater amounts of radiation. Most of this radiation is "light" of some wave-length ranging from the so-called heat radiations of very long wave length to the so-called gamma rays which have wave-lengths even shorter than the X-rays used in medicine. All of these radiations travel at the same speed; this, the speed of light, is 186,000 miles per second. The radiations are intense enough to kill people within an appreciable distance from the explosion, and are in fact the major cause of deaths and injuries apart from mechanical injuries. The greatest number of radiation injuries was probably due to the ultra-violet rays which have a wave length slightly shorter than visible light and which caused flash burn comparable to severe sunburn. After these, the gamma rays of ultra short wave length are most important; these cause injuries similar to those from over-doses of X-rays. The origin of the gamma rays is different from that of the bulk of the radiation: the latter is caused by the extremely high temperatures in the bomb, in the same way as light is emitted from the hot surface of the sun or from the wires in an incandescent lamp. The gamma rays on the other hand are emitted by the atomic nuclei themselves when they are transformed in the fission process. The gamma rays are therefore specific to the atomic bomb and are completely absent in T.N.T. explosions. The light of longer wave length (visible and ultra-violet) is also emitted by a T.N.T. explosion, but with much smaller intensity than by an atomic bomb, which makes it insignificant as far as damage is concerned. A large fraction of the gamma rays is emitted in the first few microseconds (millionths of a second) of the atomic explosion, together with neutrons which are also produced in the nuclear fission. The neutrons have much less damage effect than the gamma rays because they have a smaller intensity and also because they are strongly absorbed in air and therefore can penetrate only to relatively small distances from the explosion: at a thousand yards the neutron intensity is negligible. After the nuclear emission, strong gamma radiation continues to come from the exploded bomb. This generates from the fission products and continues for about one minute until all of the explosion products have risen to such a height that the intensity receive
PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>  



Top keywords:

atomic

 
explosion
 

length

 
radiation
 

emitted

 

intensity

 
injuries
 

radiations

 

fission

 

damage


smaller

 
products
 

neutrons

 

called

 

caused

 

visible

 

violet

 
continues
 

nuclear

 

shorter


fraction

 

longer

 

specific

 

completely

 

process

 
transformed
 
absent
 

explosions

 
insignificant
 

concerned


exploded
 

height

 

strong

 

negligible

 
emission
 

generates

 

minute

 

neutron

 
effect
 

strongly


absorbed

 
produced
 

millionths

 

penetrate

 

nuclei

 
distances
 

thousand

 
receive
 

microseconds

 

important