FREE BOOKS

Author's List




PREV.   NEXT  
|<   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   >>  
cipal quantitative study of his magnetic condenser used 13 identical coils, each with 100 turns. In order that the turns should all be at approximately the same distance from the needle, the coils were wound of the finest brass wire that could be silk-insulated, the wire diameter being 0.02 lines. On adding coils one at a time across the cell (i.e., connecting them in parallel), the deflections were as follows: Turns 100 200 300 400 500 600 700 Deflection in degrees 45 50 55 59-60 62 63 64 Turns 800 900 1000 1100 1200 1300 Deflection in degrees 65 65-1/2 66 66 66 66 Adding some coils with fewer turns, and connecting various combinations "as a _continuum_" (i.e., in series), the deflections using the same cell were: Turns 1 5 10 25 50 75 100 200 Deflection in degrees 10 22 27 30 35-40 40 40 40 Turns 300 400 500 600 700 800 900 1000 Deflection in degrees 40 40 41 40 40 40 40 40 Making a few coils from wire with 1/8-line diameter, the deflections, again using the same cell were: Turns 5 25 50 100 Over 100 Deflection in degrees 20-22 40-45 45 65 65 Since the needle used in these experiments was almost as long as the inside clearance of the coils, no simple tangent law can be applied, and it is not possible to discover an equivalent circuit in modern terms. However, the constancy of the deflections for large numbers of turns in each case indicates that the cell voltage and resistance were fairly constant, and a rough estimate suggests that the cell resistance was comparable to the resistance of one of the 100-turn coils of fine wire. Such a value means that cell resistance limited the maximum deflections for the parallel-connected multipliers, while coil resistance fixed the limit in the series case. For all of these reasons, it was impossible that any useful functional law could be obtained from the data. Poggendorf concluded only that "the amplifying power of the condenser does not increase without limit, but has a maximum value dependent on the conditions of plate area and wire size." He added two other significant comments derived f
PREV.   NEXT  
|<   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   >>  



Top keywords:

deflections

 
resistance
 

Deflection

 
degrees
 

parallel

 

maximum

 
series
 

needle

 

condenser

 

diameter


connecting

 
constant
 

fairly

 

derived

 

estimate

 

comparable

 

suggests

 
voltage
 

modern

 

circuit


equivalent

 

significant

 

However

 

constancy

 

numbers

 
comments
 
discover
 

impossible

 
reasons
 

amplifying


functional
 

Poggendorf

 

concluded

 

increase

 
limited
 

conditions

 

obtained

 

connected

 
dependent
 

multipliers


adding

 
insulated
 

magnetic

 

identical

 

quantitative

 
finest
 

distance

 
approximately
 

experiments

 

inside