FREE BOOKS

Author's List




PREV.   NEXT  
|<   474   475   476   477   478   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   496   497   498  
499   500   501   502   503   504   505   506   507   508   509   510   511   512   513   514   515   516   517   518   519   520   521   522   523   >>   >|  
es in point, for they are not discharges between insulating particles. 1549. An arrangement was made for discharge between two balls (1485.) (fig. 129.) but, in place of connecting the inducteous ball directly with the discharging train, it was put in communication with the inside coating of a Leyden jar, and the discharging train with the outside coating. Then working the machine, it was found that whenever sonorous and luminous discharge occurred at the balls A B, the jar became charged; but that when these did not occur, the jar acquired no charge: and such was the case when small rounded terminations were used in place of the balls, and also in whatever manner they were arranged. Under these circumstances, therefore, discharge even between the air and conductors was always luminous. 1550. But in other cases, the phenomena are such as to make it almost certain, that dark discharge can take place across air. If the rounded end of a metal rod, 0.15 of an inch in diameter, be made to give a good negative brush, the approach of a smaller end or a blunt point opposite to it will, at a certain distance, cause a diminution of the brush, and a glow will appear on the positive inducteous wire, accompanied by a current of air passing from it. Now, as the air is being charged both at the positive and negative surfaces, it seems a reasonable conclusion, that the charged portions meet somewhere in the interval, and there discharge to each other, without producing any luminous phenomena. It is possible, however, that the air electrified positively at the glowing end may travel on towards the negative surface, and actually form that atmosphere into which the visible negative brushes dart, in which case dark discharge need not, of necessity, occur. But I incline to the former opinion, and think, that the diminution in size of the negative brush, as the positive glow comes on to the end of the opposed wire, is in favour of that view. 1551. Using rarefied air as the dielectric, it is very easy to obtain luminous phenomena as brushes, or glow, upon both conducting balls or terminations, whilst the interval is dark, and that, when the action is so momentary that I think we cannot consider currents as effecting discharge across the dark part. Thus if two balls, about an inch in diameter, and 4 or more inches apart, have the air rarefied about them, and are then interposed in the course of discharge, an interrupted or spark current be
PREV.   NEXT  
|<   474   475   476   477   478   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   496   497   498  
499   500   501   502   503   504   505   506   507   508   509   510   511   512   513   514   515   516   517   518   519   520   521   522   523   >>   >|  



Top keywords:

discharge

 

negative

 

luminous

 

charged

 

phenomena

 

positive

 
rarefied
 
terminations
 

rounded

 

diminution


diameter

 
interval
 

brushes

 

current

 
coating
 

inducteous

 

discharging

 
atmosphere
 

visible

 

insulating


opinion

 

incline

 

necessity

 
discharges
 

surface

 
producing
 

particles

 

travel

 

glowing

 

electrified


positively

 

currents

 

effecting

 

inches

 

interrupted

 

interposed

 

dielectric

 

opposed

 

favour

 

obtain


momentary
 

action

 

whilst

 

conducting

 

surfaces

 

machine

 

working

 

conductors

 

inside

 

Leyden