FREE BOOKS

Author's List




PREV.   NEXT  
|<   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191  
192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   >>   >|  
ure may be determined directly and accurately by finding the dew-point and applying the concave (vapor-pressure) curves. This does away with the necessity for the empirical convex curves and wet-and-dry-bulb readings. To find the dew-point some form of apparatus, consisting essentially of a thin glass vessel containing a thermometer and a volatile liquid, such as ether, may be used. The vessel is gradually cooled through the evaporation of the liquid, accelerated by forcing air through a tube until a haze or dimness, due to condensation from the surrounding air, first appears upon the brighter outer surface of the glass. The temperature at which the haze first appears is the dew-point. Several trials should be made for this temperature determination, using the average temperature at which the haze appears and disappears. To determine the relative humidity of the surrounding air by means of the dew-point thus determined, find the concave curve intersecting the top horizontal (100 per cent relative humidity) line nearest the dew-point temperature. Follow parallel with this curve till it intersects the vertical line representing the temperature of the surrounding air. The horizontal line passing through this intersection will give the relative humidity. Example: Temperature of surrounding air is 80; dew-point is 61; relative humidity is 53 per cent. The dew-point determination is, however, not as convenient to make as the wet-and-dry-bulb hygrometer readings. Therefore, the hygrometer (convex) curves are ordinarily more useful in determining relative humidities. The Hygrodeik In Figure 94 will be seen the Hygrodeik. This instrument is used to determine the amount of moisture in the atmosphere. It is a very useful instrument, as the readings may be taken direct with accuracy. To find the relative humidity in the atmosphere, swing the index hand to the left of the chart, and adjust the sliding pointer to that degree of the wet-bulb thermometer scale at which the mercury stands. Then swing the index hand to the right until the sliding pointer intersects the curved line, which extends downwards to the left from the degree of the dry-bulb thermometer scale, indicated by the top of the mercury column in the dry-bulb tube. At that intersection,
PREV.   NEXT  
|<   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191  
192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   >>   >|  



Top keywords:
relative
 

humidity

 

temperature

 
surrounding
 
appears
 
thermometer
 

readings

 

curves

 

atmosphere

 

Hygrodeik


intersects
 
determined
 

instrument

 

hygrometer

 

horizontal

 

determination

 

intersection

 

vessel

 

sliding

 

degree


convex
 

pointer

 

determine

 
concave
 

mercury

 
liquid
 
Therefore
 

Temperature

 

Example

 

ordinarily


convenient

 

curved

 
moisture
 
direct
 

adjust

 
stands
 

accuracy

 

amount

 

humidities

 

determining


column

 

extends

 
Figure
 

essentially

 
consisting
 
apparatus
 

volatile

 

evaporation

 
accelerated
 

cooled