FREE BOOKS

Author's List




PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   >>  
y fully discussed in several literary and commercial periodicals; and recently, Mr Taylor's little work[1] has presented it in a more permanent form. Our own pages appear particularly suitable for giving wide circulation to a familiar and popular exposition of the subject. The ancients used certain letters to represent numbers, and we still employ the Roman numeral characters as the most elegant way of expressing a date in typography or sculpture; but every one must see what a tedious business the calculation of large sums would be according to this cumbrous system of notation: nor is it easy to say whereabouts our commercial status, to say nothing of science, would have been to-day, had it never been superseded. The Romans themselves, in computing large numbers, always had recourse to the abacus--a counting-frame with balls on parallel wires, somewhat similar to that now used in infant-schools. It was a great step gained, and a most important preparation for clearing away the darkness of the middle ages by the light of science, when between the eighth and thirteenth centuries the use of the characters 1, 2, 3, &c. was generally established in Europe, having been received from Eastern nations, long accustomed to scientific computations. The great advantage of these numbers is, that they proceed on the decimal system--that is, they denote different values according to their relative places, each character signifying ten times more accordingly as it occupies a place higher. Thus 8, in the first place to the right, is simply 8; but in the next to the left, it is 80; in the third, 800; and in the fourth, 8000. Yet we do not require to grasp these large numbers in our thought, but deal with each figure as a simple unit, and subject it to every arithmetical process without even adverting to its real value. To some, it may seem superfluous to explain a matter so familiar; but we have met with many who know pretty well how to use our system of notation mechanically, yet do not know, or rather have not thought of the beautifully simple principle on which it proceeds--that of decimal ascension. Now, we want to see the same principle applied to the gradations of our money, weights, and measures. Instead of our complicated denominations of money--namely, pounds, each containing twenty shillings, these each divisible into twelve pence, and these again into four farthings--we want a scale in which _ten_ of each denomination wou
PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   >>  



Top keywords:

numbers

 

system

 

characters

 

science

 

notation

 
thought
 

simple

 

principle

 

decimal

 

commercial


subject
 

familiar

 

require

 

accustomed

 

values

 

denote

 

advantage

 
proceed
 

figure

 

computations


scientific

 

fourth

 

simply

 

occupies

 

higher

 

places

 
relative
 
signifying
 

character

 
Instead

measures

 

complicated

 

denominations

 
weights
 

gradations

 

ascension

 

applied

 

pounds

 
farthings
 

denomination


twenty

 

shillings

 

divisible

 

twelve

 

proceeds

 

beautifully

 
process
 
adverting
 

superfluous

 

explain