FREE BOOKS

Author's List




PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  
the instrument the _refractive index_, as it is called, of any precious stone that is not too highly refractive. (Its upper limit is 1.80. This would exclude very few stones of importance, _i. e._, zircon, diamond, sphene, and demantoid garnet.) Those readers who wish to make a more intensive study of the construction and use of the refractometer will find a very full and complete account of the subject in _Gem-Stones and their Distinctive Characters_, by G. F. Herbert-Smith, New York; James Pott & Co., 1912. Chapter IV., pp. 21-36. The Herbert-Smith refractometer is there described fully, its principle is explained and directions for using it are given. The price of the refractometer is necessarily so high (duty included) that its purchase might not be justified in the case of the smaller retailer. Every large dealer in colored stones, whether importer, wholesaler, or retailer, should have one, as by its use very rapid and very accurate determinations of stones may be made, and its use is not confined to unmounted stones, for any stone whose table facet can be applied to the surface of the lens in the instrument can be determined. LESSON III DOUBLE REFRACTION EXPLANATION OF DOUBLE REFRACTION. In Lesson II. we learned what is meant by _refraction_ of light. While glass and a small number of precious stones (diamond, garnet, and spinel) bend light as was illustrated in Fig. 1, practically all the other stones cause a beam of light on entering them to separate, and the path of the light in the stone becomes double, as shown in Fig. 2. This behavior is called _double refraction_. It may be used to distinguish those stones which are doubly refracting from those which are not. For example, in the case of a stone which is doubly refracting to a strong degree, such as a peridot (the lighter yellowish-green chrysolite is the same material and behaves similarly toward light), the separation of the light is so marked that the edges of the rear facets, as seen through the table, appear _double_ when viewed through a lens. A zircon will also similarly separate light and its rear facets also appear double-lined as seen with a lens from the table of the stone. The rarer stones, sphene and epidote, likewise exhibit this property markedly. Some colorless zircons, when well cut, so closely resemble diamonds that even an expert might be deceived, if caught off his guard, but this simple test of looking for the doubled
PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  



Top keywords:
stones
 

double

 
refractometer
 

REFRACTION

 
DOUBLE
 
Herbert
 
refraction
 

separate

 

refracting

 

doubly


similarly

 

retailer

 

facets

 

sphene

 

called

 

zircon

 

precious

 

diamond

 

garnet

 

refractive


instrument

 

simple

 

distinguish

 

entering

 
behavior
 
doubled
 

spinel

 

number

 

illustrated

 

practically


expert

 
zircons
 
colorless
 

closely

 

diamonds

 

resemble

 

viewed

 

epidote

 

likewise

 
exhibit

markedly
 
marked
 

separation

 

strong

 
degree
 

deceived

 

property

 

peridot

 

lighter

 
behaves