FREE BOOKS

Author's List




PREV.   NEXT  
|<   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195  
196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   >>   >|  
d that injury to these structures brought lack of equilibrium and inability to walk, swim or fly in a straight course. If, for example, the horizontal canal in the left ear is destroyed, the animal continually deviates to the left as he advances, and so is forced into a "circus movement". They found that the compensatory movements normally made in reaction to a movement impressed on the animal from without were no longer made when the canals were destroyed. They found that something very much like these compensatory movements could be elicited by direct stimulation of the end-organs in the canals or of the sensory nerves leading from them. And they found that little currents of the liquid filling the canals acted as a stimulus to these end-organs and so aroused the {237} compensatory movements. They were thus led to accept a view that was originally suggested by the position of the canals in space. [Illustration: Fig. 40.--How the sense cells in a semicircular canal are stimulated by a water current. This current is itself an inertia back-flow, resulting from a turning of the head in the opposite direction. (Figure text: water current, nerve to brain)] Each "semicircular" canal, itself considerably more than a semicircular tube, opens into the vestibule at each end and thus amounts to a complete circle. Therefore rotating the head must, by inertia, produce a back flow of the fluid contents of the canal, and this current, by bending the hairs of the sense cells in the canal, would stimulate them and give a sensation of rotation, or at least a sensory nerve impulse excited by the head rotation. When a human subject is placed, blindfolded, in a chair that can be rotated without sound or jar, it is found that he can easily tell whenever you start to turn him in either direction. If you keep on turning him at a constant speed, he soon ceases to sense the movement, but if then you stop him, he says you are starting to turn him in the opposite {238} direction. He senses the beginning of the rotary movement because this causes the back flow through his canals; he ceases to sense the uniform movement because friction of the liquid in the slender canal soon abolishes the back flow by causing the liquid to move with the canal; and he senses the stopping of this movement because the liquid, again by inertia, continues to move in the direction it had been moving just before when it was keeping pace with the canal. Thus we
PREV.   NEXT  
|<   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195  
196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   >>   >|  



Top keywords:

movement

 

canals

 
liquid
 
current
 

direction

 
inertia
 

semicircular

 
compensatory
 
movements
 

organs


sensory
 
opposite
 

ceases

 

senses

 
turning
 

rotation

 
animal
 

destroyed

 

constant

 

easily


inability

 

rotated

 

sensation

 

stimulate

 

bending

 

impulse

 

excited

 

straight

 
blindfolded
 

subject


stopping

 
continues
 

injury

 

abolishes

 

causing

 

keeping

 

moving

 

slender

 

friction

 

starting


brought

 

uniform

 

structures

 

beginning

 

rotary

 
equilibrium
 
Therefore
 

accept

 

aroused

 

stimulus