FREE BOOKS

Author's List




PREV.   NEXT  
|<   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209  
210   211   212   213   214   215   216   217   >>  
nd to show how their abundance, shape and arrangement contribute to the strength or weakness of the specimen. The last of these constituents, cementite, is a definite chemical compound, an iron carbide, Fe_{3}C, containing 6.6 per cent. of carbon, so hard as to scratch glass, very brittle, and imparting these properties to hardened steel and cast iron. With this knowledge at his disposal the iron-maker can work with his eyes open and so regulate his melt as to cause these various constituents to crystallize out as he wants them to. Besides, he is no longer confined to the alloys of iron and carbon. He has ransacked the chemical dictionary to find new elements to add to his alloys, and some of these rarities have proved to possess great practical value. Vanadium, for instance, used to be put into a fine print paragraph in the back of the chemistry book, where the class did not get to it until the term closed. Yet if it had not been for vanadium steel we should have no Ford cars. Tungsten, too, was relegated to the rear, and if the student remembered it at all it was because it bothered him to understand why its symbol should be W instead of T. But the student of today studies his lesson in the light of a tungsten wire and relieves his mind by listening to a phonograph record played with a "tungs-tone" stylus. When I was assistant in chemistry an "analysis" of steel consisted merely in the determination of its percentage of carbon, and I used to take Saturday for it so I could have time enough to complete the combustion. Now the chemists of a steel works' laboratory may have to determine also the tungsten, chromium, vanadium, titanium, nickel, cobalt, phosphorus, molybdenum, manganese, silicon and sulfur, any or all of them, and be spry about it, because if they do not get the report out within fifteen minutes while the steel is melting in the electrical furnace the whole batch of 75 tons may go wrong. I'm glad I quit the laboratory before they got to speeding up chemists so. The quality of the steel depends upon the presence and the relative proportions of these ingredients, and a variation of a tenth of 1 per cent. in certain of them will make a different metal out of it. For instance, the steel becomes stronger and tougher as the proportion of nicked is increased up to about 15 per cent. Raising the percentage to 25 we get an alloy that does not rust or corrode and is non-magnetic, although both its component metals
PREV.   NEXT  
|<   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209  
210   211   212   213   214   215   216   217   >>  



Top keywords:

carbon

 

chemistry

 

laboratory

 

chemists

 
vanadium
 
instance
 

chemical

 

alloys

 

constituents

 

percentage


student

 
tungsten
 

silicon

 

sulfur

 
molybdenum
 

titanium

 
nickel
 
chromium
 
cobalt
 

phosphorus


manganese

 

stylus

 
assistant
 

analysis

 

played

 
listening
 

phonograph

 

record

 
consisted
 
complete

combustion
 

determination

 
Saturday
 
determine
 

stronger

 

tougher

 

nicked

 

proportion

 
increased
 

magnetic


metals

 
component
 

corrode

 

Raising

 

variation

 

ingredients

 

furnace

 

electrical

 

melting

 

report