FREE BOOKS

Author's List




PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  
isted him financially with his models, now concluded that their aid had been misplaced. The inventor, though disappointed, was by no means cast down. He clung tenaciously to his pet scheme and to such effect that in 1896 a German Engineering Society advanced him some funds to continue his researches. This support sufficed to keep things going for another two years, during which time a full-sized vessel was built. The grand idea began to crystallise rapidly, with the result that when a public company was formed in 1898, sufficient funds were rendered available to enable the first craft to be constructed. It aroused considerable attention, as well it might, seeing that it eclipsed anything which had previously been attempted in connection with dirigibles. It was no less than 420 feet in length, by 38 feet in diameter, and was fitted with two cars, each of which carried a sixteen horse-power motor driving independent propellers rigidly attached to the body of the vessel. The propellers were both vertical and horizontal, for the purpose of driving the ship in the two planes--vertical and horizontal respectively. The vessel was of great scientific interest, owing to the ingenuity of its design and construction. The metallic skeleton was built up from aluminium and over this was stretched the fabric of the envelope, care being observed to reduce skin friction, as well as to achieve impermeability. But it was the internal arrangement of the gas-lifting balloons which provoked the greatest concern. The hull was divided into compartments, each complete in itself, and each containing a small balloon inflated with hydrogen. It was sub-division as practised in connection with vessels ploughing the water applied to aerial craft, the purpose being somewhat the same. As a ship of the seas will keep afloat so long as a certain number of its subdivisions remain watertight, so would the Zeppelin keep aloft if a certain number of the gas compartments retained their charges of hydrogen. There were no fewer than seventeen of these gas-balloons arranged in a single line within the envelope. Beneath the hull and extending the full length of the latter was a passage which not only served as a corridor for communication between the cars, but also to receive a weight attached to a cable worked by a winch. By the movement of this weight the bow or stem of the vessel could be tilted to assist ascent and descent. The construction of the vessel
PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  



Top keywords:
vessel
 
connection
 
length
 

vertical

 

compartments

 
balloons
 
hydrogen
 

weight

 

number

 

envelope


horizontal

 
attached
 

driving

 

purpose

 
construction
 

propellers

 

vessels

 

ploughing

 

inflated

 

practised


division

 

aerial

 

afloat

 

models

 

financially

 
balloon
 
applied
 

impermeability

 
internal
 

arrangement


achieve

 

friction

 

observed

 

reduce

 

lifting

 
concluded
 

complete

 

divided

 

provoked

 

greatest


concern

 

subdivisions

 
receive
 

worked

 

served

 
corridor
 
communication
 

tilted

 

assist

 
ascent